Advertisement

Molecular Breeding

, 39:48 | Cite as

Genetic variation and development of a SCAR marker of anemone-type flower in chrysanthemum

  • Xiaodong Yang
  • Yangyang Wu
  • Jiangshuo Su
  • Ni Ao
  • Zhiyong Guan
  • Jiafu Jiang
  • Sumei Chen
  • Weimin Fang
  • Fadi Chen
  • Fei ZhangEmail author
Review
  • 35 Downloads

Abstract

An anemone shape featuring elongated and pigmented disk florets is an important target in breeding for flower shape in chrysanthemum. A good understanding of the inheritance of anemone-related traits and specific molecular markers are vital for accelerating the breeding progress. In this study, two segregating intercultivar F1 populations of the anemone-type ‘Nannong Xuefeng’ × the nonanemone-type ‘QX096’ (80 lines) and the same anemone-type ‘Nannong Xuefeng’ × ‘Monalisa’ (144 lines) were employed to investigate the genetic variation of anemone traits, and the anemone-specific markers were developed via the bulked segregant analysis (BSA) method by constructing two extreme bulks from each 10 anemone-type and nonanemone-type F1 lines, respectively. A moderate high level of variation coefficient (~ 24 to 57%) was obtained for most tubular floret traits relevant to the anemone type in both segregating populations. The anemone morphology of the hybrids was intermediate between that of their parents, and some transgressive individuals were observed, indicating great potential for the selection of lines with the desirable anemone type. In the BSA, four sequence-related amplified polymorphism (SRAP) primer combinations were identified as informative between the bulks of the anemone and nonanemone F1 individuals. After cloning and sequencing, only one SRAP marker, i.e., M11E1_272, was successfully converted to the sequence-characterized amplified region (SCAR) marker SCAR168. The SCAR marker was validation in the two F1 populations demonstrated that the marker SCAR168 could truly discriminate anemone and nonanemone types with a high coincidence ratio 87.86~92.5%. In addition, a general linear model (GLM)-based association analysis (P < 0.01) revealed that the SCAR marker exhibited a positive effect on the anemone traits and explained 20.83~33.66% phenotypic variation. Results of the current study show the inheritance pattern of anemone traits, and the developed anemone-specific SCAR marker paves the way for the marker-assisted selection of flower shape in chrysanthemum.

Keywords

Chrysanthemum Bulked segregant analysis Flower shape Inheritance Molecular markers 

Abbreviations

AFLP

Amplified fragment length polymorphism

BSA

Bulked segregant analysis

ISSR

Inter-simple sequence repeat

GLM

General linear model

MAS

Marker-assisted selection

RAPD

Random amplified polymorphic DNA

SCAR

Sequence-characterized amplified regions

SRAP

Sequence-related amplified polymorphism

SSR

Simple sequence repeats

Notes

Acknowledgements

We would like to thank the anonymous reviewers for their constructive comments and suggestions that significantly improved the presentation of this paper.

Author contribution

FZ conceived and designed the project. FC, WF, and ZG provided the materials. XY and YW conducted experiments. XY and FZ analyzed the data and wrote the manuscript. All authors read and approved the manuscript.

Funding information

This work was financially supported by the National Natural Science Foundation of China (31370699, 31572152) and the Program for Key Research and Development, Jiangsu, China (BE2018426, BE2017412).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

11032_2019_958_MOESM1_ESM.docx (20 kb)
Table S1 Sequences of SRAP primers (19 kb)
11032_2019_958_MOESM2_ESM.docx (15 kb)
Table S2 Phenotypic values of six anemone-related floral traits in the segregating F1 population of ‘Nannong Xuefeng’ × ‘QX096’ (DOCX 15 kb)
11032_2019_958_MOESM3_ESM.docx (15 kb)
Table S3 Phenotypic values of six anemone-related floral traits in the segregating F1 population of ‘Nannong Xuefeng’ × ‘Monalisa’ (DOCX 15 kb)
11032_2019_958_MOESM4_ESM.doc (27 kb)
Table S4 DNA sequence of the SRAP amplified fragment M11E1_272 (DOC 27 kb)
11032_2019_958_MOESM5_ESM.docx (19 kb)
Table S5 Segregation of anemone and nonanemone types in segregating F1 populations (DOCX 18 kb)
11032_2019_958_Fig5_ESM.png (350 kb)
Fig. S1

Flower morphology of anemone-type chrysanthemum ‘Nannong Xuefeng’ and nonanemone type ‘QX096’. a, d: Inflorescence morphology; b, e: Disk floret; c: Ray floret. Lo: Lobe; Ov: Ovule; St: Style; An: Anther. (PNG 350 kb)

11032_2019_958_MOESM6_ESM.tif (16.8 mb)
High Resolution Image (TIF 17250 kb)
11032_2019_958_Fig6_ESM.png (12.4 mb)
Fig. S2

Amplification result in segregating F1 individuals of anemone-type ‘Nannong Xuefeng’ and anemone-type ‘Monalisa’ by SCAR168. A: Anemone-type individuals; N: Nonanemone-type individuals. The specific recombination events are indicated by red rectangle, the unclear band patterns are indicated by blue rectangle. (PNG 12742 kb)

11032_2019_958_MOESM7_ESM.tif (20 mb)
High Resolution Image (TIF 20518 kb)

References

  1. Anderson NO (2006) Chrysanthemum: Dendranthema × grandiflora Tzvelv. Flower breeding and genetics: issues, challenges and opportunities for the 21st century. pp 389–437Google Scholar
  2. Anderson NO, Ascher PD (2000) Fertility changes in inbred families of self-incompatible chrysanthemums (Dendranthema grandiflora). J Amer Soc Hort Sci 125(5):619–625CrossRefGoogle Scholar
  3. Bauer E, Weyen J, Schiemann A, Graner A, Ordon F (1997) Molecular mapping of novel resistance genes against barley mild mosaic virus (BaMMV). Theor Appl Genet 95(8):1263–1269CrossRefGoogle Scholar
  4. Borchert T, Hohe A (2009) Identification of molecular markers for the flower type in the ornamental crop Calluna vulgaris. Euphytica 170:203–213CrossRefGoogle Scholar
  5. Bradbury PJ, Zhang Z, Kroon DE, Casstevens TM, Ramdoss Y, Buckler ES (2007) TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics 23(19):2633–2635CrossRefGoogle Scholar
  6. Chen F, Jiang J, Guo W (2003) Heredity of several flower characters in Dendranthema grandiflora with small inflorescences. Acta Hort Sin 30(2):175–182Google Scholar
  7. Chen FD, Li FT, Chen SM, Guan ZY, Fang WM (2009) Meiosis and pollen germinability in small-flowered anemone type chrysanthemum cultivars. Plant Syst Evol 280(3):143–151CrossRefGoogle Scholar
  8. Chen X, Hedley PE, Morris J, Liu H, Niks RE, Waugh R (2011) Combining genetical genomics and bulked segregant analysis-based differential expression: an approach to gene localization. Theor Appl Genet 122(7):1375–1383CrossRefGoogle Scholar
  9. Dhawan C, Kharb P, Sharma R, Uppal S, Aggarwal RK (2013) Development of male-specific SCAR marker in date palm (Phoenix dactylifera L.). Tree Genet Genomes 9(5):1143–1150CrossRefGoogle Scholar
  10. Ji JJ, Huang W, Yin YX, Li Z, Gong ZH (2014) Development of a SCAR marker for early identification of S-cytoplasm based on mitochondrial SRAP analysis in pepper (Capsicum annuum L.). Mol Breed 33(3):679–690CrossRefGoogle Scholar
  11. Jogaiah S, Sharathchandra RG, Raj N, Vedamurthy AB, Shetty HS (2014) Development of SCAR marker associated with downy mildew disease resistance in pearl millet (Pennisetum glaucum L.). Mol Biol Rep 41(12):7815–7824CrossRefGoogle Scholar
  12. Kim SH, Kim JY, Kim DY, Yoon JS, Jung WJ, Yacoubi I, Seo YW (2016) Development of a SCAR marker associated with salt tolerance in durum wheat (Triticum turgidum ssp. durum) from a semi-arid region. Genes Genom 38(10):939–948CrossRefGoogle Scholar
  13. Klie M, Menz I, Linde M, Debener T (2016) Strigolactone pathway genes and plant architecture: association analysis and QTL detection for horticultural traits in chrysanthemum. Mol Gen Genomics 291:957–969CrossRefGoogle Scholar
  14. Li G, Quiros CF (2001) Sequence-related amplified polymorphism (SRAP), a new marker system based on a simple PCR reaction: its application to mapping and gene tagging in Brassica. Theor Appl Genet 103(2–3):455–461CrossRefGoogle Scholar
  15. Li H, Shao J (1990) Investigation, collection and classification of chrysanthemum cultivars in China. J Nanjing Agric Univ 13(1):30–36Google Scholar
  16. Li P, Zhang F, Chen S, Jiang J, Wang H, Su J, Fang W, Guan Z, Chen F (2016) Genetic diversity, population structure and association analysis in cut chrysanthemum (Chrysanthemum morifolium Ramat.). Mol Gen Genomics 291(3):1117–1125CrossRefGoogle Scholar
  17. Liu C, He Y, Gou T, Li X, Ning G, Bao M (2016) Identification of molecular markers associated with the double flower traits in Petunia hybrida. Sci Hortic 206:43–50CrossRefGoogle Scholar
  18. Livaja M, Wang Y, Wieckhorst S, Haseneyer G, Seidel M, Hahn V, Knapp SJ, Taudien S, Schön CC, Bauer E (2013) BSTA: a targeted approach combines bulked segregant analysis with next-generation sequencing and de novo transcriptome assembly for SNP discovery in sunflower. BMC Genomics 14(1):628CrossRefGoogle Scholar
  19. Ma Y, Hu J, Myers JR, Mazourek M, Coyne CJ, Main D, Wang M, Humann J, McGee RJ (2016) Development of SCAR markers linked to sin-2, the stringless pod trait in pea (Pisum sativum L.). Mol Breed 36:105CrossRefGoogle Scholar
  20. Marieschi M, Torelli A, Bruni R (2012) Quality control of saffron (Crocus sativus L.): development of SCAR markers for the detection of plant adulterants used as bulking agents. J Agr Food Chem 60(44):10998–11004Google Scholar
  21. Michelmore RW, Paran I, Kesseli R (1991) Identification of markers linked to disease-resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. Proc Natl Acad Sci U S A 88(21):9828–9832CrossRefGoogle Scholar
  22. Murray M, Thompson WF (1980) Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res 8(19):4321–4326CrossRefGoogle Scholar
  23. Nakatsuka T, Koishi K (2018) Molecular characterization of a double-flower mutation in Matthiola incana. Plant Sci 268:39–46CrossRefGoogle Scholar
  24. Noguera F, Capel J, Alvarez J, Lozano R (2005) Development and mapping of a codominant SCAR marker linked to the andromonoecious gene of melon. Theor Appl Genet 110(4):714–720CrossRefGoogle Scholar
  25. Peng H, Zhang F, Jiang J, Chen S, Fang W, Guan Z, Chen F (2015) Identification of quantitative trait loci for branching traits of spray cut chrysanthemum. Euphytica 202(3):385–392CrossRefGoogle Scholar
  26. Rajesh M, Jerard B, Preethi P, Thomas RJ, Fayas T, Rachana K, Karun A (2013) Development of a RAPD-derived SCAR marker associated with tall-type palm trait in coconut. Sci Hortic 150(2):312–316CrossRefGoogle Scholar
  27. Sharma P, Prakash S, Bhat S (2007) Identification of AFLP markers linked to the male fertility restorer gene of CMS (Moricandia arvensis) Brassica juncea and conversion to SCAR marker. Theor Appl Genet 114(2):385–392PubMedGoogle Scholar
  28. Su J, Zhang F, Li P, Guan Z, Fang W, Chen F (2016) Genetic variation and association mapping of waterlogging tolerance in chrysanthemum. Planta 244(6):1241–1252CrossRefGoogle Scholar
  29. Su J, Yang X, Zhang F, Wu S, Xiong S, Shi L, Guan Z, Fang W, Chen F (2018) Dynamic and epistatic QTL mapping reveals the complex genetic architecture of waterlogging tolerance in chrysanthemum. Planta 247(4):899–924CrossRefGoogle Scholar
  30. Tang HQ, Zhang F, Chen FD, Fang WM, Wang CC, Chen SM (2015) Heterosis and mixed genetic analysis of inflorescence traits of anemone-typed chrysanthemum. Acta Hort Sin 42(5):907–916Google Scholar
  31. Wang C, Zhang F, Guan Z, Chen S, Jiang J, Fang W, Chen F (2014) Inheritance and molecular markers for aphid (Macrosiphoniella sanbourni) resistance in chrysanthemum (Chrysanthemum morifolium Ramat.). Sci Hortic 180:220–226CrossRefGoogle Scholar
  32. Wu M, Zhang JP, Wang JC, Yang XM, Gao AN, Zhang XK, Liu WH, Li LH (2010) Cloning and characterization of repetitive sequences and development of SCAR markers specific for the P genome of Agropyron cristatum. Euphytica 172(3):363–372CrossRefGoogle Scholar
  33. Xu W, Gao H, Chen H (2000) Some rules of Dendranthema morifolia character heredity. J Zhejiang Forest Coll 17(1):37–41Google Scholar
  34. Xu GH, Su WY, Shu YJ, Cong WW, Wu L, Guo CH (2012) RAPD and ISSR-assisted identification and development of three new SCAR markers specific for the Thinopyrum elongatum E (Poaceae) genome. Genet Mol Res 11(2):1741–1751CrossRefGoogle Scholar
  35. Yagi M, Yamamoto T, Isobe S, Tabata S, Hirakawa H, Yamaguchi H, Tanase K, Onozaki T (2014) Identification of tightly linked SSR markers for flower type in carnation (Dianthus caryophyllus L.). Euphytica 198:175–183CrossRefGoogle Scholar
  36. Yang L, Fu S, Khan MA, Zeng W, Fu J (2013a) Molecular cloning and development of RAPD-SCAR markers for Dimocarpus longan variety authentication. SpringerPlus 2(1):501CrossRefGoogle Scholar
  37. Yang YY, Yu MH, Miao J, Bing JL, Su PK, Li MG, Chang L, Zhen BW, Tahara Y, Kitano H (2013b) Identification of two SCAR markers co-segregated with the dominant Ms and recessive ms alleles in onion (Allium cepa L.). Euphytica 190(2):267–277CrossRefGoogle Scholar
  38. Yi B, Chen Y, Lei S, Tu J, Fu T (2006) Fine mapping of the recessive genic male-sterile gene (Bnms1) in Brassica napus L. Theor Appl Genet 113(4):643–650CrossRefGoogle Scholar
  39. Yoshioka S, Sumitomo K, Fujita Y, Yamagata A, Onozaki T, Shibata M, Ohmiya A (2010) Significance of CmCCD4a orthologs in apetalous wild chrysanthemum species, responsible for white coloration of ray petals. Euphytica 171(2):295–300CrossRefGoogle Scholar
  40. Zhang SJ, Zhang SL, Wu J, Wang YT, Li Y, Li X (2010) Identification of AFLP-derived SCAR markers linked to the pear scab resistance gene. Acta Hort Sin 37(7):1147–1154Google Scholar
  41. Zhang F, Chen S, Chen F, Fang W, Chen Y, Li F (2011) SRAP-based mapping and QTL detection for inflorescence-related traits in chrysanthemum (Dendranthema morifolium). Mol Breed 27(1):11–23CrossRefGoogle Scholar
  42. Zhang F, Jiang J, Chen S, Chen F, Fang W (2012) Mapping single-locus and epistatic quantitative trait loci for plant architectural traits in chrysanthemum. Mol Breed 30(2):1027–1036CrossRefGoogle Scholar
  43. Zhao J, Chen F, Teng N, Chen S (2009a) Genetic analysis and RAPD marker of creeping habits in ground-cover chrysanthemum. Sci Agric Sin 42(2):734–741Google Scholar
  44. Zhao J, Chen S, Chen F (2009b) Conversion of RAPD marker linked to creep plant type in ground-cover chrysanthemum to SCAR marker. Sci Silvae Sin 45(9):147–150Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Xiaodong Yang
    • 1
  • Yangyang Wu
    • 1
  • Jiangshuo Su
    • 1
  • Ni Ao
    • 1
  • Zhiyong Guan
    • 1
  • Jiafu Jiang
    • 1
  • Sumei Chen
    • 1
  • Weimin Fang
    • 1
  • Fadi Chen
    • 1
  • Fei Zhang
    • 1
    Email author
  1. 1.State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of HorticultureNanjing Agricultural UniversityNanjingPeople’s Republic of China

Personalised recommendations