Advertisement

Molecular Breeding

, 39:28 | Cite as

Identification of QTLs linked to fruit quality traits in apricot (Prunus armeniaca L.) and biological validation through gene expression analysis using qPCR

  • Beatriz Ester García-Gómez
  • Juan Alfonso Salazar
  • Luca DondiniEmail author
  • Pedro Martínez-GómezEmail author
  • David Ruiz
Article
  • 6 Downloads

Abstract

Nine important fruit quality traits—including fruit weight, stone weight, fruit diameter, skin ground colour, flesh colour, blush colour, firmness, soluble solids content and acidity content—were studied for two consecutive years in two F1 apricot progeny derived from the crosses ‘Bergeron’ × ‘Currot’ (B×C) and ‘Goldrich’ × ‘Currot’ (G×C). Results showed great segregation variability between populations, which was expected because of the polygenic nature and quantitative inheritance of all the studied traits. In addition, some correlations were observed among the fruit quality traits studied. QTL (quantitative trait loci) analysis was carried out using the phenotypic data and genetic linkages maps of ‘B×C’ and ‘G×C’ obtained with SSR and SNP markers. The most significant QTLs were localised in LG4 for soluble solids content and in LG3 for skin and flesh colour. In LG4, we can highlight the presence of candidate genes involved in D-glucose and D-mannose binding, while in LG3, we identified MYB genes previously linked to skin colour by other authors. In order to clearly identify the candidate genes responsible for the analysed traits, we converted the QTLs into expression QTLs and analysed the abundance of transcripts in the segregating genotypes ‘GC 2–11’ and ‘GC 3–7’ from the G×C population. Using qPCR, we analysed the gene expression of nine candidate genes associated with the QTLs identified, including transcription factors (MYB 10), carotenoid biosynthesis genes (LOX 2, CCD1 and CCD4), anthocyanin biosynthesis genes (ANS, UFGT and F3’5’H), organic acid biosynthesis genes (NAD ME) and ripening date genes (NAC). Results showed variable expression patterns throughout fruit development and between contrasted genotypes, with a correlation between validated genes and linked QTLs. The MYB10 gene was the best candidate gene for skin colour. In addition, we found that monitoring NAC expression is a good RNA marker for evaluating ripening progression.

Keywords

Apricot Prunus armeniaca Fruit quality Breeding QTL Candidate gene qPCR 

Notes

Author contributions

LD, PM-G and D.R. participated in the design and coordination of the study. D.R. and J.A.S. performed the phenotypic evaluation. B.E.G-G and J.A.S. Salazar carried out the SSR and SNP analyses, and B.E.G-G carried out the qPCR analysis. B.E.G-G, J.A.S., LD, PM-G and D.R. participated in the manuscript elaboration and discussion.

Funding information

This study was financially assisted by the Seneca Foundation of the Region of Murcia (Saavedra Fajardo Postdoctoral fellow 20397/SF/17) during the stay of Juan A. Salazar in Murcia. This study was also supported by the “Apricot breeding” project of the Spanish Ministry of Economy and Competiveness (AGL2013-41452-R) and the project “Breeding stone fruit species assisted by molecular tools” of the Seneca Foundation of the Region of Murcia (19879/GERM/15).

Supplementary material

11032_2018_926_Fig4_ESM.png (2.1 mb)
Supplementary Figure 1

Genetic maps of F1 apricot progeny ‘Bergeron’ (B) × ‘Currot’ (C) and QTL identification by interval mapping analysis for two years of phenotyping: ripening time (RT), fruit weight (FW), stone weight (SW) and fruit diameter (CAL) are in blue; skin colour (SKC), flesh colour (FLSC) and blush colour (BLSC) are in orange; firmness (FIRM) is in violet; and malic acid (MALIC) and soluble solids (SS) are in red. The LOD threshold for QTL intervals: *α < 0.05, **α < 0.01. The assayed candidate genes are indicated with arrows in bold and italics. (PNG 2180 kb)

11032_2018_926_MOESM1_ESM.tif (1.2 mb)
High Resolution Image (TIF 1211 kb)
11032_2018_926_Fig5_ESM.png (1.5 mb)
Supplementary Figure 2

Genetic maps of F1 apricot progeny ‘Goldrich’ (G) × ‘Currot’ (C) and QTL identification by interval mapping analysis for two years of phenotyping: ripening time (RT), fruit weight (FW), stone weight (SW) and fruit diameter (CAL) are in blue; skin colour (SKC), flesh colour (FLSC) and blush colour (BLSC) are in orange; firmness (FIRM) is in violet; malic acid (MALIC) and soluble solids (SS) are in red. The LOD threshold for QTL intervals: *α < 0.05, **α < 0.01. The assayed candidate genes are indicated with arrows in bold and italics. (PNG 1504 kb)

11032_2018_926_MOESM2_ESM.tif (1 mb)
High Resolution Image (TIF 1041 kb)
11032_2018_926_MOESM3_ESM.xlsx (17 kb)
Supplementary Table 1 Description of assayed candidate genes through qPCR. (XLSX 17 kb)
11032_2018_926_MOESM4_ESM.doc (128 kb)
ESM 4 (DOC 128 kb)

References

  1. Abbott AG, Rajapakse S, Sosinski B, Lu ZX, Sossey-Alaoui K, Gannavarapu M, Reighard G, Ballard RE, Baird WV, Callahan A (1998) Construction of saturated linkage maps of peach crosses segregating for characters controlling fruit quality, tree architecture and pest resistance. Acta Hort 465:41–49CrossRefGoogle Scholar
  2. Adami M. De Franceschi P, Brandi F, Liverani A, Giovannini A, Rosati C, Dondini L, Tartarini S (2013) Identifying a carotenoid cleavage dioxygenase (ccd4) gene controlling yellow/white fruit flesh color of peach. Plant Mol Biol Reporter 31 (5):1166–1175Google Scholar
  3. Ayour J, Sagar M, Alfeddy MN, Taourirte M, Benichou M (2016) Evolution of pigments and their relationship with skin color based on ripening in fruits of different Moroccan genotypes of apricots (Prunus armeniaca L.). Scientia Hort 207:168–175CrossRefGoogle Scholar
  4. Balogh E, Halász J, Szani Z, Hegedus A (2018) Correspondence between maturity date and molecular variations in a NAC transcription factor of diploid and polyploid Prunus species. Turkish J Agric Forest 42:136–144Google Scholar
  5. Ban Y, Honda C, Hatsuyama Y, Igarashi M, Bessho H, Moriguchi T (2007) Isolation and functional analysis of a MYB transcription factor gene that is a key regulator for the development of red coloration in apple skin. Plant Cell Physiol 48:958–970PubMedCrossRefGoogle Scholar
  6. Bazzano LA, He J, Ogden LG, Loria CM, Vupputuri S, Myers L, Whelton PK (2002) Fruit and vegetable intake and risk of cardiovascular disease in US adults the first national health and nutrition examination survey epidemiologic follow-up study. Am J Clin Nutr 76:93–99PubMedCrossRefGoogle Scholar
  7. Bliss FA, Arulsekar S, Foolad MR, Becerra V, Gillen AM, Warburton ML, Dandekar AM, Kocsisne GM, Mydin KK (2002) An expanded genetic linkage map of Prunus based on an interspecific cross between almond and peach. Genome 45:520–529PubMedCrossRefGoogle Scholar
  8. Brandi F, Bar E, Mourgues F, Horváth G, Turcsi E, Giuliano G, Rosati C (2011) Study of “Redhaven” peach and its white-fleshed mutant suggests a key role of CCD4 carotenoid dioxygenase in carotenoid and norisoprenoid volatile metabolism. BMC Plant Biol 11(1):24PubMedPubMedCentralCrossRefGoogle Scholar
  9. Brown GS, Walker TD (1990) Indicators of maturity in apricots using biplot multivariate analysis. J Sci Food Agri 53:321–331CrossRefGoogle Scholar
  10. Bureau S, Catherine M, Renard GC, Reich M, Ginies C, Audergon JM (2009) Change in anthocyanin concentrations in red apricot fruits during ripening. Food Sci Technol 42(1):372–377Google Scholar
  11. Campbell OE, Merwin IA, Padilla-Zakour OI (2013) Characterization and the effect of maturity at harvest on the phenolic and carotenoid content of Northeast USA apricot (Prunus armeniaca) varieties. J Agric Food Chem 61(51):12700–12710PubMedCrossRefGoogle Scholar
  12. Campoy JA, Martínez-Gómez P, Ruiz D, Rees J, Celton JM (2010) Developing microsatellite multiplex and megaplex PCR systems for high throughput characterization of breeding progenies and linkage maps spanning the apricot genome. Plant Mol Biol Report 28:560–568CrossRefGoogle Scholar
  13. Campoy JA, Le Dantec L, Barreneche T, Dirlewanger E, Quero-García J (2015) New insights into fruit firmness and weight control in sweet cherry. Plant Mol Biol Report 33:783–796CrossRefGoogle Scholar
  14. Cantín CM, Crisosto CH, Ogundiwin EA, Gradziel T, Torrents J, Moreno MA, Gorgocena Y (2010) Chilling injury susceptibility in an intra-specific peach [Prunus persica (L.) Batsch]. Postharvest Biol Technol 58:79–87CrossRefGoogle Scholar
  15. Chagné D, Carlisle CM, Blond C, Volz RK, Whitworth CJ, Oraguzie NC, Crowhurst RN, Allan AC, Espley RV, Hellen RP, Gardiner SE (2007) Mapping a candidate gene (MdMYB10) for red flesh and foliage colour in apple. BMC Gen 8:212CrossRefGoogle Scholar
  16. Conesa A, Madrigal P, Tarazona S, Gomez-Cabrero D, Cervera A, McPherson A, Szcześniak MW, Gaffney DJ, Elo LL, Zhang X, Mortazavi A (2016) A survey of best practices for RNA-seq data analysis. Genome Biol 17:13PubMedPubMedCentralCrossRefGoogle Scholar
  17. Dare AP, Schaffer RJ, Lin-Wang K, Allan AC, Hellens RP (2008) Identification of a cis-regulatory element by transient analysis of co-ordinately regulated genes. Plant Meth 4:17CrossRefGoogle Scholar
  18. De Franceschi P, Stegmeir T, Cabrera A, van der Knaap E, Rosyara UR, Sebolt AM, Dondini L, Dirlewanger E, Quero-García J, Campoy JA, Iezzoni AF (2013) Cell number regulator genes in Prunus provide candidate genes for the control of fruit size in sweet and sour cherry. Mol Breed 32:311–326PubMedPubMedCentralCrossRefGoogle Scholar
  19. Dirlewanger E, Quero-García J, Le Dantec L, Lambert P, Ruiz D, Dondini L, Illa E, Quilot-Turion B, Audergon JM, Tartarini S, Letourmy P, Arùs P (2012) Comparison of the genetic determinism of two key phenological traits, flowering and maturity dates, in three Prunus species: peach, apricot and sweet cherry. Heredity 109(5):280–292PubMedPubMedCentralCrossRefGoogle Scholar
  20. Dirlewanger E, Moing A, Rothan C, Svanella L, Pronier V, Guye A, Plomion C, Monet R (1999) Mapping QTLs controlling fruit quality in peach (Prunus persica (L.) Batsch). Theor Appl Genet 98:18–31CrossRefGoogle Scholar
  21. Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19:11–15Google Scholar
  22. Druka A, Potokina E, Luo Z, Jiang N, Chen X, Kearsy M, Waugh R (2010) Expression quantitative trait loci analysis in plants. Plant Biotech J 8:10–27CrossRefGoogle Scholar
  23. Eduardo I, Pacheco I, Chietera G, Bassi D, Pozzi C, Vecchietti A, Rossini L (2010) QTL analysis of fruit quality traits in two peach intraspecific populations and importance of maturity date pleiotropic effect. Tree Genet Gen 7(2):323–335CrossRefGoogle Scholar
  24. Eduardo I, Pacheco I, Chietera G, Bassi D, Pozzi C, Vecchietti A, Rossini L (2011) QTL analysis of fruit quality traits in two peach intraspecific populations and importance of maturity date pleiotropic effect. Tree Genet Gen 7:323–335CrossRefGoogle Scholar
  25. Eduardo I, Chietera G, Pirona R, Pacheco I, Troggio M, Banchi E, Bassi D, Rossini L, Vecchietti A, Pozzi C (2012) Genetic dissection of aroma volatile compounds from the essential oil of peach fruit: QTL analysis and identification of candidate genes using dense SNP maps. Tree Genet Gen 9(1):189–204CrossRefGoogle Scholar
  26. Espley RV, Hellens RP, Puterill J, Kutty-Amma S, Allan AC (2007) Red colouration in apple fruit is due to the activity of a MYB transcription factor, MdMYB10. Plant J 49:414–427PubMedPubMedCentralCrossRefGoogle Scholar
  27. Etienne C, Rothan C, Moing A, Plomion C, Bodnes C, Svanella-Dumas L, Cosson P, Pronier V, Monet R, Dirlewanger E (2002a) Candidate gene and QTLs for sugar and organic acid content in peach. Theor Appl Genet 105:145–159PubMedCrossRefGoogle Scholar
  28. Etienne C, Moing A, Dirlewanger E, Raymond P, Monet R, Rothan C (2002b) Isolation and characterization of six peach cDNAs encoding key proteins in organic acid metabolism and solute accumulation: involvement in regulating peach fruit acidity. Physiol Plantarum 114(2):259–270CrossRefGoogle Scholar
  29. Fresnedo-Ramírez J, Bink MC, van de Weg E, Famula TR, Crisosto CH, Frett TJ, Gradziel TM (2015) QTL mapping of pomological traits in peach and related species breeding germplasm. Mol Breed 35:1–19CrossRefGoogle Scholar
  30. Fresnedo-Ramírez J, Frett TJ, Sandefur PJ, Salgado-Rojas A, Clark JR, Gasic K, Peace CP, Anderson N, Hartmann TP, Byrne DH, Bink MCAM, van de Weg E, Crisosto CH, Gradziel TM (2016) QTL mapping and breeding value estimation through pedigree-based analysis of fruit size and weight in four diverse peach breeding programs. Tree Genet Gen 12:25CrossRefGoogle Scholar
  31. Frett TJ, Reighard GL, Okie WR, Gasic K (2014) Mapping quantitative trait loci associated with blush in peach [Prunus persica (L.) Batsch]. Tree Genet Gen 10:367–381CrossRefGoogle Scholar
  32. Gomez E, Ledbetter CA (1997) Development of volatile compounds during fruit maturation: characterization of apricot and plum x apricot hybrids. J Sci Food Agri 74(4):541–546CrossRefGoogle Scholar
  33. Gonzalez M, Salazar E, Cabrera S, Olea P, Carrasco B (2016) Analysis of anthocyanin biosynthesis genes expression profiles in contrasting cultivars of Japanese plum (Prunus salicina L.) during fruit development. Gene Expr Patterns 21(1):54–62PubMedCrossRefPubMedCentralGoogle Scholar
  34. Guo S, Song Z, Ma R, Yang Y, Yu M (2017) Genome-wide identification and expression analysis of the lipoxygenase gene family during peach fruit ripening under different postharvest treatments. Acta Physiol Plantarum 39(5):111CrossRefGoogle Scholar
  35. Gouble B, Bureau S, Grotte M, Reich M, Reling P, Audergon JM (2005) Apricot postharvest ability in relation to ethylene production: influence of picking time and cultivar. In Proceedings of the 5th International Postharvest Symposium, Vols 1-3, edited by F. Mencarelli and P. Tonutti, 127-133. Leuven 1: International Society Horticultural ScienceGoogle Scholar
  36. Hertog MGL, Hollman PCH, Katan MB, Kromhout D (1993) Estimation of daily intake of potentially anticarcinogenic flavonoids and their determinants in adults in the Netherlands. Nutr Cancer 20:21–29PubMedCrossRefPubMedCentralGoogle Scholar
  37. Hollander, M., Wolfe, D. A., & Chicken, E. (2013).Nonparametric statistical methods(Vol. 751). John Wiley & SonsGoogle Scholar
  38. Huang YF, Vialet S, Guiraud JL, Torregrosa L, Bertrand Y, Cheynier V, This P, Terrier N (2014) A negative MYB regulator of proanthocyanidin accumulation, identified through expression quantitative locus mapping in the grape berry. New Phytol 201(3):795–809PubMedCrossRefPubMedCentralGoogle Scholar
  39. Illa I, Eduardo I, Audergon JM, Barale F, Dirlewanger E, Li X, Moing A, Lambert P, Le Dantec L, Gao Z, Poëssel JL, Pozzi C, Rossini L, Vecchietti A, Arús P, Howad W (2011) Saturating the Prunus (stone fruits) genome with candidate genes for fruit quality. Mol Breed 28:667–682CrossRefGoogle Scholar
  40. Infante R, Martínez-Gómez P, Predieri S (2008) Quality oriented fruit breeding: peach [Prunus persica (L.) Batsch]. J Food Agri Environ 6:342–356Google Scholar
  41. Infante R, Martínez-Gómez P, Predieri S (2011) Breeding for fruit quality in Prunus. In: Jenks MA, Bebeli PJ (eds) Breeding for fruit quality. Ed. Wiley and Blackwel, New York (USA), pp 201–229CrossRefGoogle Scholar
  42. Jo Y, Lian S, Cho JK, Choi H, Chu H, Cho WK (2015) De novo transcriptome assembly of two different apricot cultivars. Gen Data 6:275–276CrossRefGoogle Scholar
  43. Lang L, Xu A, Ding J, Zhang Y, Zhao N, Tian ZS, Liu YP, Wang Y, Liu X, Liang FH (2017) Quantitative trait locus mapping of salt tolerance and identification of salt-tolerant genes in Brassica napus L. Front Plant Sci 8:100Google Scholar
  44. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Durbin R (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25(16):2078–2079PubMedPubMedCentralCrossRefGoogle Scholar
  45. Machlin LJ (1995) Critical assessment of the epidemiological data concerning the impact of antioxidant nutrients on cancer and cardiovascular disease. Crit Rev Food Sci Nutr 35:41–50PubMedCrossRefGoogle Scholar
  46. Martínez-García PJ, Fresnedo-Ramírez J, Parfitt DE, Gradziel TM, Crisosto CH (2013) Effect prediction of identified SNPs linked to fruit quality and chilling injury in peach [Prunus persica (L.) Batsch]. Plant Mol Biol 81:175–188CrossRefGoogle Scholar
  47. Marty I, Bureau S, Sarkissian G, Gouble B, Audergon JM, Albagnac G (2005) Ethylene regulation of carotenoid accumulation and carotenogenic gene expression in colour-contrasted apricot varieties (Prunus armeniaca). J Exp Botany 56(417):1877–1886CrossRefGoogle Scholar
  48. Milne I, Stephen G, Bayer M, Cock PJ, Pritchard L et al (2013) Using tablet for visual exploration of second-generation sequencing data. Brief Bioinf 14:193–202CrossRefGoogle Scholar
  49. Niu J, Zhu B, Cai J, Li P, Wang L, Dai H, Qiu L, Yu H, Ha D, Zhao H, Zhang H, Lin S (2014) Selection of reference genes for gene expression studies in Siberian apricot (Prunus sibirica L.) germplasm using quantitative real-time PCR. PLoS One 9(8):e103900PubMedPubMedCentralCrossRefGoogle Scholar
  50. Ogundiwin EA, Peace CP, Gradziel TM, Parfitt DE, Bliss FA, Crisosto CH (2009) A fruit quality gene map of Prunus. BMC Gen 10:587CrossRefGoogle Scholar
  51. Pierantoni L, Dondini L, De Franceschi P, Musacchi S, Winkel-Shirley BJ, Sansavini S (2010) Mapping of an anthocyanin-regulating MYB transcription factor and its expression in red and green pear, Pyrus communis. Plant Physiol Bioch 48:1020–1026CrossRefGoogle Scholar
  52. Pirona R, Eduardo I, Pacheco I, Linge CD, Miculan M, Verde I, Tartarini S, Dondini L, Pea G, Bassi D, Rossini L (2013) Fine mapping and identification of a candidate gene for a major locus controlling maturity date in peach. BMC Plant Biol 13:166PubMedPubMedCentralCrossRefGoogle Scholar
  53. Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT–PCR. Nucleic Acids Res 29:e45PubMedPubMedCentralCrossRefGoogle Scholar
  54. Quarta R, Dettori MT, Sartori A, Verde I (2000) Genetic linkage map and QTL analysis in peach. Acta Hort 521:233–241CrossRefGoogle Scholar
  55. Quilot B, Wu BH, Kervella J, Génard M, Foulongne M, Moreau K (2004) QTL analysis of quality traits in an advanced backcross between Prunus persica cultivars and the wild relative species P. davidiana. Theor Appl Genet 109:884–897PubMedCrossRefGoogle Scholar
  56. Ravaglia D, Espley RV, Henry-Kirk RA, Andreotti C, Ziosi V, Hellens RP, Costa G, Allan AC (2013) Transcriptional regulation of flavonoid biosynthesis in nectarine (Prunus persica) by a set of R2R3 MYB transcription factors. BMC Plant Biol 13(1):68PubMedPubMedCentralCrossRefGoogle Scholar
  57. RStudio Team (2015). RStudio: integrated development for R. RStudio, Inc., Boston, MA URL http://www.rstudio.com/
  58. Ruiz D, Egea J (2008) Phenotypic diversity and relationships of fruit quality traits in apricot (Prunus armeniaca L.) germplasm. Euphytica 163:143–158CrossRefGoogle Scholar
  59. Ruiz D, Egea J, Gil MI, Tomás-Barberan FA (2005a) Characterization and quantitation of phenolic compounds in new apricot (Prunus armeniaca L.) varieties. J Agric Food Chem 53:9544–9552PubMedCrossRefGoogle Scholar
  60. Ruiz D, Egea J, Tomás-Barberán FA, Gil MI (2005b) Carotenoids from new apricot (Prunus armeniaca L.) varieties and their relationship with flesh and skin color. J Agric Food Chem 53:6368–6374PubMedCrossRefGoogle Scholar
  61. Ruiz D, Reich M, Bureau S, Renard C, Audergon JM (2008) Application of reflectance colorimeter measurements and infrared spectroscopy methods to rapid and nondestructive evaluation of carotenoids content in apricot (Prunus armeniaca L.). J Agric Food Chem 56(13):4916–4922PubMedCrossRefGoogle Scholar
  62. Ruiz D, Lambert P, Audergon JM, Dondini L, Tartarini S, Adami M, Gennari F, Cervellati C, De Franceschi P, Sansavini S, Bureau S, Gouble B, Reich M, Renard CMGC, Bassi D, Testolin R (2010) Identification of QTLs for fruit quality traits in apricot. Acta Hort 862:587–592CrossRefGoogle Scholar
  63. Salazar JA, Ruiz D, Egea J, Martínez-Gómez P (2013) Transmission of fruit quality traits in apricot (Prunus armeniaca L.) and analysis of linked quantitative trait loci (QTLs) using simple sequence repeat (SSR) markers. Plant Mol Biol Report 31:1506–1517CrossRefGoogle Scholar
  64. Salazar JA, Ruiz D, Campoy JA, Sánchez-Pérez R, Crisosto CH, Martínez-García PJ, Blenda A, Jung S, Main D, Martínez-Gómez P, Rubio M (2014) Quantitative trait loci (QTL) and Mendelian trait loci (MTL) analysis in Prunus: a breeding perspective and beyond. Plant Mol Biol Report 32:1–18CrossRefGoogle Scholar
  65. Salazar JA, Rubio M, Ruiz D, Tartarini S, Martínez-Gómez P, Dondini L (2015) SNP development for genetic diversity analysis in apricot. Tree Genet Gen 11:15CrossRefGoogle Scholar
  66. Salazar JA, Ruiz D, Campoy JA, Tartarini S, Dondini L, Martínez-Gómez P (2016) Inheritance of reproductive phenology traits and related QTL identification in apricot. Tree Genet Gen 12(4):71CrossRefGoogle Scholar
  67. Salazar JA, Pacheco I, Shinya P, Zapata P, Silva C, Ruiz D, Martínez-Gómez P, Infante R (2017) Genotyping by sequencing for SNP-based linkage analysis and identification of QTLs linked to fruit quality traits in Japanese plum (Prunus salicina Lindl.). Front Plant Sci 8:476PubMedPubMedCentralCrossRefGoogle Scholar
  68. Simpson CG, Cullen DW, Hackett CA, Smith K, Hallett PD, McNicol J, Woodhead M, Graham J (2017) Mapping and expression of genes associated with raspberry fruit ripening and softening. Theor Appl Genet 130:557–572PubMedCrossRefGoogle Scholar
  69. Sims ET, Comin D (1963) Evaluation of objective maturity indices for Halehaven peaches. Proc Am Soc Hortic Sci 82:125–130Google Scholar
  70. Socquest-Juglard D, Christen D, Devènes G, Gessler C, Duffy B, Patocchi A (2012) Mapping architectural, phenological, and fruit quality QTLs in apricot. Plant Mol Biol Report 31:387–397CrossRefGoogle Scholar
  71. Sooriyapathirana SS, Khan A, Sebolt AM, Wang D, Bushakra JM, Wang KL, Allan AC, Gardiner SE, Chagné H, Iezzoni AF (2010) QTL analysis and candidate gene mapping for skin and flesh color in sweet cherry fruit (Prunus avium L.). Tree Genet Gen 6:821–832CrossRefGoogle Scholar
  72. Souty M, Audergon JM, Chambroy Y (1990) Abricot: les critères de qualite´. L’Arboriculture fruitière 430:16–24Google Scholar
  73. Sugiyama A, Omura M, Shimoda T, Fuji H, Endo T, Shimizu T, Nesumi H, Nonaka K, Ikoma Y (2014) Expression quantitative trait loci analysis of carotenoid metabolism-related genes in Citrus. J Japan Soc Hort Sci 83:32–43CrossRefGoogle Scholar
  74. Takos AM, Jaffe FW, Jacob SR, Bogs J, Robinson SP, Walker AR (2006) Light-induced expression of a MYB gene regulates anthocyanin biosynthesis in red apples. Plant Physiol 142:1216–1232PubMedPubMedCentralCrossRefGoogle Scholar
  75. Tanaka Y, Sasaki N, Ohmiya A (2008) Biosynthesis of plant pigments: anthocyanins, betalains and carotenoids. Plant J 54(4):733–749PubMedCrossRefPubMedCentralGoogle Scholar
  76. Telias A, Kui LW, Stevenson DE, Cooney JM, Hellens RP, Allan AC, Hoover EE, Bradeen JM (2011) Apple skin patterning is associated with differential expression of MYB10. BMC Plant Biol 11:14CrossRefGoogle Scholar
  77. Van den Berg H, Faulks R, Fernando Granado H, Hirschberg J, Olmedilla B, Sandmann G, Southon S, Stahl W (2000) The potential for the improvement of carotenoid levels in foods and the likely systemic effects. J Sci Food Agric 80:880–912CrossRefGoogle Scholar
  78. Van Ooijen JW (2006) JoinMap 4, software for the calculation of genetic linkage maps in experimental populations. Wageningen, KyazmaGoogle Scholar
  79. Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes." Gen Biol 3 (7): RESEARCH0034Google Scholar
  80. Verde I, Quarta R, Cerdrola C, Dettori MT (2002) QTL analysis of agronomic traits in a BC1 peach population. Acta Hort 592:291–297CrossRefGoogle Scholar
  81. Verde I, Abbott AG, Scalabrin S, Jung S, Shu S, Marroni F et al (2013) The high-quality draft genome of peach (Prunus persica) identifies unique patterns of genetic diversity, domestication and genome evolution. Nat Genet 45(5):487–494PubMedCrossRefGoogle Scholar
  82. Voorrips RE (2002) MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered 93:77–78PubMedCrossRefGoogle Scholar
  83. Wang D, Karle R, Iezzoni AF (2000) QTL analysis of flower and fruit traits in sour cherry. Theor Appl Genet 100:535–544CrossRefGoogle Scholar
  84. Wang Z, Meng D, Wang A, Li T, Jiang S, Cong P, Li T (2013) The methylation of the PcMYB10 promoter is associated with green-skinned sport in Max Red Bartlett pear. Plant Physiol 162(2):885–896PubMedPubMedCentralCrossRefGoogle Scholar
  85. Xi W, Zheng H, Zhang Q, Li W (2016) Profiling taste and aroma compound metabolism during apricot fruit development and ripening. Int J Mol Sci 17:998PubMedCentralCrossRefPubMedGoogle Scholar
  86. Xie F, Xiao P, Chen D, Xu L, Zhang B (2012) miRDeepFinder: a miRNA analysis tool for deep sequencing of plant small RNAs. Plant Mol Biol 80(1):75–84CrossRefGoogle Scholar
  87. Ye J, Liu P, Zhu C, Qu J, Wang X, Sun Y, Sun F, Jiang Y, Yue G, Wang C (2014) Identification of candidate genes JcARF19 and JcIAA9 associated with seed size traits in Jatropha. Funct Integr Genomics 14(4):757–766PubMedCrossRefGoogle Scholar
  88. Zhang B, Shen JY, Wei WW, Xi WP, Xu CJ, Ferguson I, Chen KS (2010) Expression of genes associated with aroma formation derived from the fatty acid pathway during peach fruit ripening. J Agri Food Chem 58(10):6157–6165CrossRefGoogle Scholar
  89. Zhou Y, Guo D, Li J, Cheng J, Zhou H, Gu C, Gardiner S, Han YP (2012) Coordinated regulation of anthocyanin biosynthesis through photorespiration and temperature in peach (Prunus persica). Tree Genet Gen 9(1):265–278CrossRefGoogle Scholar
  90. Zhou H, Lin-Wang K, Wang H, Gu C, Dare AP, Espley RV, He H, Allan AC, Han Y (2015) Molecular genetics of blood-fleshed peach reveals activation of anthocyanin biosynthesis by NAC transcription factors. Plant J 82(1):105–121PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Beatriz Ester García-Gómez
    • 1
  • Juan Alfonso Salazar
    • 1
  • Luca Dondini
    • 2
    Email author
  • Pedro Martínez-Gómez
    • 1
    Email author
  • David Ruiz
    • 1
  1. 1.Departamento de Mejora VegetalCEBAS-CSICMurciaSpain
  2. 2.Dipartimento di Scienze AgrarieUniversità degli Studi di BolognaBolognaItaly

Personalised recommendations