Advertisement

Molecular Breeding

, 38:143 | Cite as

Development of simple sequence repeat (SSR) markers in Medicago ruthenica and their application for evaluating outcrossing fertility under open-pollination conditions

  • Jun Li
  • Hongyan Li
  • Enhui Chi
  • Fan Huang
  • Lei Liu
  • Zhenyan Ding
  • Wengui Shi
  • Fugui Mi
  • Zhiyong LiEmail author
Article
  • 114 Downloads

Abstract

Medicago ruthenica is a perennial leguminous plant with great economic value for forage production and soil conservation in northern China. Simple sequence repeat (SSR) markers are a major molecular tool for genetic and genomic research that have been extensively developed and used in major crops. However, few are available in M. ruthenica, an important cool-season forage species in China. Using transcriptome data, we developed 213 polymorphic SSR markers. Additionally, we used these markers to quantify selfing and outcrossing rates of M. ruthenica plants under field conditions. The outcrossing rate was calculated to be 75.9%. The first large set of codominant markers developed for M. ruthenica and knowledge of its outcrossing behavior should be highly valuable for molecular and traditional biological research.

Keywords

Simple sequence repeat (SSR) Medicago ruthenica Outcrossing fertility 

Notes

Acknowledgments

The authors would like to acknowledge Yanqi Wu from Oklahoma State University for kindly providing suggestions. This work has been supported by a grant from the National Natural Science Foundation of China (31601998), Ministry of Agriculture Crop Germplasm Resources Protection and Utilization Project (2018NWB037), and the Central Non-profit Research Institutes Fundamental Research Funds of China (1610332017003).

Author contributions

J.L. and H.L. conceived and designed the experiment. Z.L. supervised the entire study. E.C. and Z.D. performed the experiments. E.C., F.H., and L.L. analyzed the data. W.S. and F.M. prepared the materials. J.L. wrote the paper. All authors read and approved the final manuscript.

Supplementary material

11032_2018_905_MOESM1_ESM.xlsx (86 kb)
ESM 1 (XLSX 86 kb)

References

  1. Balabaev GA (1934) Yellow lucernes of Siberia, Medicago ruthenica (L.). Ledb. And M. platycarpos (L.) Ledb. Bull App Bot Genet. Plant Breed service7: 113–123Google Scholar
  2. Campbell TA (2000) Molecular analysis of genetic variation among alfalfa (Medicago sativa L.) and Medicago ruthenica clones. Can J Plant Sci 80(4):773–779.  https://doi.org/10.4141/P99-115 CrossRefGoogle Scholar
  3. Campbell TA, Bao G, Xia ZL (1997) Agronomic evaluation of Medicago ruthenica collected in Inner Mongolia. Crop Sci 37(2):599–604.  https://doi.org/10.2135/cropsci1997.0011183X003700020048x CrossRefGoogle Scholar
  4. Charlesworth D (2003) Effects of inbreeding on the genetic diversity of populations. Philos Trans R Soc Lond Ser B Biol Sci 358(1434):1051–1070.  https://doi.org/10.1098/rstb.2003.1296 CrossRefGoogle Scholar
  5. Eujayl I, Sledge MK, Wang L, May GD, Chekhovskiy K, Zwonitzer JC, Mian MAR (2004) Medicago truncatula EST-SSRs reveal cross-species genetic markers for Medicago spp. Theor Appl Genet 108(3):414–422.  https://doi.org/10.1007/s00122-003-1450-6 CrossRefPubMedGoogle Scholar
  6. Gupta S, Prasad M (2009) Development and characterization of genic SSR markers in Medicago truncatula and their transferability in leguminous and non-leguminous species. Genome 52(9):761–771.  https://doi.org/10.1139/1309-051 CrossRefPubMedGoogle Scholar
  7. Gupta PK, Balyan IS, Sharma PC, Ramesh B (1996) Microsatellites in plants: a new class of molecular markers. Curr Sci 70(1):45–54Google Scholar
  8. Jarne P, David P (2008) Quantifying inbreeding in natural populations of hermaphroditic organisms. Heredity 100(4):431–439.  https://doi.org/10.1038/hdy.2008.2 CrossRefPubMedGoogle Scholar
  9. Jia Dujing ZY, Zihe Z, Zhizhong C (1984) A study on some characters of a superior legume species melissitus ruthenicus var. inschanicus in the Alpine district. J Gansu Agric Univ 64:64–69 (in chinese)Google Scholar
  10. Li H, Luo XY, Wang DK (1990) Study on crossbreeding of Pocockia ruthenica and Medicago sativa.II. Observations on the meiosis of F1 pollen mother cells. Grassland China 60:20–23 (in chinese)Google Scholar
  11. Li HY, Li ZY, Cai LY, Shi WG, Mi FG, Shi FL (2013) Analysis of genetic diversity of Ruthenia Medic (Medicago ruthenica (L.) Trautv.) in Inner Mongolia using ISSR and SSR markers. Genet Resour Crop Evol 60(5):1687–1694.  https://doi.org/10.1007/s10722-012-9950-3 CrossRefGoogle Scholar
  12. Liu LL, Wu YQ (2012a) Development of a genome-wide multiple duplex-SSR protocol and its applications for the identification of selfed progeny in switchgrass. BMC Genomics 13:522.  https://doi.org/10.1186/1471-2164-13-522 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Liu LL, Wu YQ (2012b) Identification of a selfing compatible genotype and mode of inheritance in switchgrass. Bioenergy Res 5(3):662–668.  https://doi.org/10.1007/s12155-011-9173-z CrossRefGoogle Scholar
  14. Liu J, HuD, ChuH, YanJ, LiJ (2013a) Screening of drought- and salinity-responsive EST-SSR markers in Medicago ruthenica Trautv. Plant Sci J 31(5):493–499 (in chinese).CrossRefGoogle Scholar
  15. Liu L, Huang Y, Punnuri S, Samuels T, Wu Y, Mahalingam R (2013b) Development and integration of EST-SSR markers into an established linkage map in switchgrass. Mol Breed 32(4):923–931.  https://doi.org/10.1007/s11032-013-9921-1 CrossRefGoogle Scholar
  16. Mable BK, Adam A (2007) Patterns of genetic diversity in outcrossing and selfing populations of Arabidopsis lyrata. Mol Ecol 16(17):3565–3580.  https://doi.org/10.1111/j.1365-294X.2007.03416.x CrossRefPubMedGoogle Scholar
  17. Saha MC, Mian MAR, Eujayl I, Zwonitzer JC, Wang LJ, May GD (2004) Tall fescue EST-SSR markers with transferability across several grass species. Theor Appl Genet 109(4):783–791.  https://doi.org/10.1007/s00122-004-1681-1 CrossRefPubMedGoogle Scholar
  18. Tan CC, Wu YQ, Taliaferro CM, Bell GE, Martin DL, Smith MW, Moss JQ (2014) Selfing and outcrossing fertility in common Bermudagrass under open-pollinating conditions examined by SSR markers. Crop Sci 54(4):1832–1837.  https://doi.org/10.2135/cropsci2013.12.0816 CrossRefGoogle Scholar
  19. Toth G, Gaspari Z, Jurka J (2000) Microsatellites in different eukaryotic genomes: survey and analysis. Genome Res 10(7):967–981.  https://doi.org/10.1101/gr.10.7.967 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Varshney RK, Graner A, Sorrells ME (2005) Genic microsatellite markers in plants: features and applications. Trends Biotechnol 23(1):48–55.  https://doi.org/10.1016/j.tibtech.2004.11.005 CrossRefPubMedGoogle Scholar
  21. Wang Z, Yu G, Shi B, Wang X, Qiang H (2014) Development and characterization of simple sequence repeat (SSR) markers based on RNA-sequencing of Medicago sativa and in silico mapping onto the M. truncatulagenome. Plos One 9(3):e92029.  https://doi.org/10.1371/journal.pone.0103682 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Wang K, Lin Z, Wang L, Wang K, Shi Q, Du L, Ye X (2018) Development of a set of PCR markers specific to Aegilops longissima chromosome arms and application in breeding a translocation line. Theor Appl Genet 131(1):13–25.  https://doi.org/10.1007/s00122-017-2982-5 CrossRefPubMedGoogle Scholar
  23. Yan J, Chu H-J, Wang H-C, Li J-Q, Sang T (2009) Population genetic structure of two Medicago species shaped by distinct life form, mating system and seed dispersal. Ann Bot 103(6):825–834.  https://doi.org/10.1093/aob/mcp006 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Zalapa JE, Cuevas H, Zhu H, Steffan S, Senalik D, Zeldin E, McCown B, Harbut R, Simon P (2012) Using next-generation sequencing approaches to isolate simple sequence repeat (SSR) loci in the plant sciences. Am J Bot 99(2):193–208.  https://doi.org/10.3732/ajb.1100394 CrossRefPubMedGoogle Scholar
  25. Zhao M, Rong Y (2012) Genetic diversity of 24 Medicago ruthenica populations using SSR markers. Acta Botan Boreali-Occiden Sin 32(12):2405–2411 (in chinese)Google Scholar
  26. Zhou Q, Luo D, Ma L, Xie W, Wang Y, Wang Y, Liu Z (2016) Development and cross-species transferability of EST-SSR markers in Siberian wildrye (Elymus sibiricus L.) using Illumina sequencing. Sci Rep 6:20549.  https://doi.org/10.1038/srep20549 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  • Jun Li
    • 1
  • Hongyan Li
    • 1
  • Enhui Chi
    • 2
  • Fan Huang
    • 1
  • Lei Liu
    • 1
  • Zhenyan Ding
    • 1
  • Wengui Shi
    • 1
  • Fugui Mi
    • 2
  • Zhiyong Li
    • 1
    Email author
  1. 1.Institute of Grassland ResearchChinese Academy of Agricultural SciencesHohhotPeople’s Republic of China
  2. 2.Inner Mongolia Agricultural UniversityHohhotPeople’s Republic of China

Personalised recommendations