Molecular Breeding

, 39:30 | Cite as

The analysis of functional genes in maize molecular breeding

  • Chenyu Ma
  • Weimin Zhan
  • Wenliang Li
  • Mengdi Zhang
  • Mingyang Lu
  • Xue Xia
  • Qinghe Bai
  • Xi Wang
  • Pengtao Yan
  • Zhangying XiEmail author


Molecular breeding is capable of improving important agricultural crop traits by controlling functional genes, aiming to attain high yield, stability and quality. During this process, the quantity and maneuverability of functional genes are important in determining breeding efficiency. In our research, 186 functional genes relating to maize agronomic traits, which are available for marker-assisted selection or genetic transformation strategies, were collected from the literature and projected onto an integration map. The traits corresponding to these functional genes included disease resistance, stress tolerance, tassel traits, ear traits, kernel-related traits, leaf traits and plant-type characteristics. The integration map demonstrated that these functional genes were unevenly distributed on maize chromosomes. The greatest and fewest numbers of functional genes were found on chromosomes 1 and 8, respectively. Moreover, 36, 25, 27, 23, 14, 15, 11, 6, 9 and 20 genes were found on chromosomes 1 to 10, respectively. Most of disease-resistant genes were found on chromosome 10, while the genes of kernel-related and leaf-related traits were found on chromosomes 4 and 2, respectively. Out of the 186 functional genes, 95 have been characterized using genetic mapping, 19 using map-based cloning, 53 using transposon-tagging cloning strategies and 19 using other methods. Thus, the number of functional genes identified in maize is still limited and further research on functional genes is required.


Maize Molecular breeding Functional genes Marker-assisted selection Transgenic methods 



This work was funded by the National Natural Science Foundation of China (31371629).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Abe A, Kosugi S, Yoshida K, Natsume S, Takagi H, Kanzaki H, Matsumura H, Yoshida K, Mitsuoka C, Tamiru M, Innan H, Cano L, Kamoun S, Terauchi R (2012) Genome sequencing reveals agronomically important loci in rice using MutMap. Nat Biotechnol 30:174–178PubMedCrossRefGoogle Scholar
  2. Albertsen MC, Beach LR, Howard J, Huffman GA (1995) Nucleotide sequences mediated male fertility and method of using same. United States Patent: US005478369AGoogle Scholar
  3. Albertsen MC, Fox T, Trimnell M, Wu Y, Lowe K, Li B, Faller M (2009) Msca1 nucleotide sequences impacting plant male fertility and method of using same. United States Patent: US20090038027A1Google Scholar
  4. Ambrose BA, Lerner D, Ciceri P, Padilla CM, Yanofsky MF, Schmidt RJ (2000) Molecular and genetic analyses of the silky1 gene reveal conservation in floral organ specification between eudicots and monocots. Mol Cell 5:569–579PubMedCrossRefGoogle Scholar
  5. Bargsten JW, Nap JP, Sanchez-Perez GF, Dijk ADV (2014) Prioritization of candidate genes in QTL regions based on associations between traits and biological processes. BMC Plant Biol 14:330–342PubMedPubMedCentralCrossRefGoogle Scholar
  6. Becraft PW, Freeling M (1994) Genetic analysis of rough sheath1 developmental mutants of maize. Genetics 136:295–311PubMedPubMedCentralGoogle Scholar
  7. Bensen RJ, Johal GS, Crane V, Tossberg JT, Schnable PS, Meeley R, Briggs SP (1995) Cloning and characterization of the maize An1 gene. Plant Cell 7:75–84PubMedPubMedCentralCrossRefGoogle Scholar
  8. Bentolila S, Guitton C, Bouvet N, Sailland A, Nykaza S, Freyssinet G (1991) Identification of an RFLP marker tightly linked to the Ht1 gene in maize. Theor Appl Genet 82:393–398PubMedCrossRefGoogle Scholar
  9. Bomblies K, Doebley JF (2006) Pleiotropic effects of the duplicate maize FLORICAULA/LEAFY gene zfl1 and zfl2 on traits under selection during maize domestication. Genetics 172:519–531PubMedPubMedCentralCrossRefGoogle Scholar
  10. Bommert P, Lunde C, Nardmann J, Vollbrecht E, Running M, Jackson D, Hake S, Werr W (2005) Thick tassel dwarf1 encodes a putative maize ortholog of the Arabidopsis CLAVATA1 leucine-rich repeat receptor-like kinase. Development 132:1235–1245PubMedCrossRefGoogle Scholar
  11. Bortiri E, Chuck G, Vollbrecht E, Rocheford T, Martienssen R, Hake S (2006) Ramosa2 encodes a lateral organ boundary domain protein that determines the fate of stem cell in branch meristems of maize. Plant Cell 18:574–585PubMedPubMedCentralCrossRefGoogle Scholar
  12. Buckler ES, Holland JB, Bradbury PJ, Acharya CB, Brown PJ, Browne C, Ersoz E, Flint-Garcia S, Garcia A, Glaubitz JC, Goodman MM, Harjes C, Guill K, Kroon DE, Larsson S, Lepak NK, Li H, Mitchell SE, Pressoir G, Peiffer JA, Rosas MO, Rocheford TR, Romay MC, Romero S, Salvo S, Sanchez Villeda H, da Silva HS, Sun Q, Tian F, Upadyayula N, Ware D, Yates H, Yu J, Zhang Z, Kresovich S, McMullen MD (2009) The genetic architecture of maize flowering time. Science 325:714–718PubMedCrossRefGoogle Scholar
  13. Buckner B, Kerlson TL, Robertson DS (1990) Cloning of the yl locus of maize, a gene involved in the biosynthesis of carotenoids. Plant Cell 2:867–876PubMedPubMedCentralCrossRefGoogle Scholar
  14. Chaubal R, Anderson JR, Trimnell MR, Fox TW, Albertsen MC, Bedinger P (2003) The transformation of anthers in the msca1 mutant of maize. Planta 216:778–788PubMedGoogle Scholar
  15. Chen CX (2002) The characterization of maize south rust resistance, the analysis and fine-mapping by molecular markers of resistant gene. Dissertation, Shandong Agricultural UniversityGoogle Scholar
  16. Chen W, Chen ZL, Song WB, Dai JR, Lai JS (2013) Molecular mapping and candidate gene prediction of maize endosperm mutant Wrk1. J Maize Sci 21(1):27–31 (in Chinese)Google Scholar
  17. Chen X, Zhang H, Sun H, Luo H, Zhao L, Dong Z, Yan S, Zhao C, Liu R, Xu C, Li S, Chen H, Jin W (2017) Irregular pollen exine1 is a novel factor in anther cuticle and pollen exine formation. Plant Physiol 173:307–325PubMedCrossRefGoogle Scholar
  18. Chen XY (2012) Genetic analysis and rough mapping of maize male sterile mutant. Dissertation, Hunan Agricultural UniversityGoogle Scholar
  19. Chen Y, Liu H, Ali F, Scott MP, Ji Q, Frei UK, Lübberstedt T (2012) Genetic and physical fine mapping of the novel brown midrib gene bm6 in maize (Zea may L.) to a 180 kb region on chromosome 2. Theor Appl Genet 125:1223–1235PubMedCrossRefGoogle Scholar
  20. Chen YN, Chen JF, Wu JY (2014) Fine mapping of gene Rab1 for red glume collar in maize. Acta Agric Boreali Sin 29(2):7–12 (in Chinese)Google Scholar
  21. Chen YS, Chao Q, Tan GQ, Zhao J, Zhang MJ, Ji Q, Xu ML (2008) Identification and fine-mapping of a major QTL conferring resistance against head smut in maize. Theor Appl Genet 117:1241–1252PubMedCrossRefGoogle Scholar
  22. Cheng HL (2011) Fine mapping of two leaf mutant gene al and yl in maize. Dissertation, Henan Agricultural UniversityGoogle Scholar
  23. Cheng HL, Chen JF, Ding JQ, Wu JY (2011) Genetic analysis and gene mapping of a leaf mutant in maize. Acta Agric Boreali Sin 26(3):7–10(in Chinese)Google Scholar
  24. Chintamanani S, Multani DS, Ruess H, Johal GS (2008) Distinct mechanisms govern the dosage-dependent and developmentally regulated resistance conferred by the maize Hm2 gene. Mol Plant-Microbe Interact 21:79–86PubMedCrossRefGoogle Scholar
  25. Chuck G, Cigan AM, Saeteurn K, Hake S (2007a) The heterochronic maize mutant corngrass1 results from overexpression of a tandem microRNA. Nat Genet 39:544–549PubMedCrossRefGoogle Scholar
  26. Chuck G, Meeley R, Irish E, Sakai H, Hake S (2007b) The maize tasselseed4 microRNA controls sex determination and meristem cell fate by targeting tasselseed6/indeterminate spikelet1. Nat Genet 39:1517–1521PubMedCrossRefGoogle Scholar
  27. Chuck G, Muszynski M, Kellogg E, Hake S, Schmidt RJ (2002) The control of spikelet meristem identity by the branched silkless1 gene in maize. Science 298:1238–1241PubMedCrossRefGoogle Scholar
  28. Chuck GS, Brown PJ, Meeley R, Hake S (2014) Maize transcription factors and affect yield traits by regulating the rate of lateral primordia initiation. Proc Natl Acad Sci U S A 111:18775–18780PubMedPubMedCentralCrossRefGoogle Scholar
  29. Colasanti J, Yuan Z, Sundaresan V (1998) The indeterminate gene encodes a zinc finger protein and regulates a leaf-generated signal required for the transition to flowering in maize. Cell 93:593–603PubMedCrossRefGoogle Scholar
  30. Collins N, Drake J, Ayliffe M, Sun Q, Ellis J, Hulbert S, Pryor T (1999) Molecular characterization of the maize Rp1-D rust resistance haplotype and its mutants. Plant Cell 11:1365–1376PubMedPubMedCentralCrossRefGoogle Scholar
  31. Collins NC, Webb CA, Seah S, Ellis JG, Hulbert SH, Pryor A (1998) The isolation and mapping of disease resistance gene analogs in maize. Mol Plant-Microbe Interact 11:968–978PubMedCrossRefGoogle Scholar
  32. Cone KC, McMullen MD, Bi IV, Davis GL, Yim YS, Gardiner JM, Polacco ML, Sanchez-Villeda H, Fang ZW, Schroeder SG, Havermann SA, Bowers JE, Paterson AH, Soderlund CA, Engler FW, Wing RA, Coe EH (2002) Genetic, physical, and informatics resources for maize on the road to an integrated map. Plant Physiol 130:1598–1605PubMedPubMedCentralCrossRefGoogle Scholar
  33. Cossegal M, Chambrier P, Mbelo S, Balzergue S, Martin-Magniette ML, Moling A, Deborde C, Guyon V, Perez P, Rogowsky P (2008) Transcriptional and metabolic adjustments in ADP-glucose pyrophosphorylase-deficient bt2 maize kernels. Plant Physiol 146:1553–1570PubMedPubMedCentralCrossRefGoogle Scholar
  34. Cui XY, Hu GY, Sun XJ, Tong SS, Chen ZF, Liu XG (2014) A genetic analysis and gene mapping of a new translucent and shrunken endosperm mutant in maize. J South Chin Agric Univ 35(5):31–35 (in Chinese)Google Scholar
  35. Da OESO, Lorbiecke R, Garg P, Müller L, Waßmann M, Lauert P, Scanlon M, Hsia AP, Schnable PS, Krupinska K, Wienand U (2004) The etched1 gene of Zea mays (L.) encodes a zinc ribbon protein that belongs to the transcriptionally active chromosome (TAC) of plastids and is similar to the transcription factor TFIIS. Plant J 38:923–939CrossRefGoogle Scholar
  36. Dellaporta SL, Calderon-Urrea A (1993) Sex determination in flowering plants. Plant Cell 5:1241–1251PubMedPubMedCentralCrossRefGoogle Scholar
  37. DeLong A, Calderon-Urrea A, Dellaporta SL (1993) Sex determination gene TASSELSEED2 of maize encodes a short-chain alcohol dehydrogenanse required for stage-specific floral organ abortion. Cell 74:757–768PubMedPubMedCentralCrossRefGoogle Scholar
  38. Ding J, Li H, Wang Y, Zhao R, Zhang X, Chen J, Xia Z, Wu J (2012) Fine mapping of Rscmv2, a major gene for resistance to sugarcane mosaic virus in maize. Mol Breed 30:1593–1600CrossRefGoogle Scholar
  39. Dong Z, Jiang C, Chen X, Zhang T, Ding L, Song W, Luo H, Lai J, Chen H, Liu R, Zhang X, Jin W (2013) Maize LAZY1 mediates shoot gravitropism and inflorescence development through regulating auxin transport, auxin signaling, and light response. Plant Physiol 163:1306–1322PubMedPubMedCentralCrossRefGoogle Scholar
  40. Du X, Linghu J, Shang H, Reid LM, Zhu X, Wang J, Wang G (2015) Fine mapping of Leafy, a dominant mutant conferring extra leaves above the ear in maize. Euphytica 206:49–56CrossRefGoogle Scholar
  41. Fink R, Gatti E, Gianfranceschi L, Gallavotti A, Isaac PG, Sari-Gorla M, Pe ME (2001) Localization and fine mapping of gaMS-1, a male gametophytic mutant of maize. Sex Plant Reprod 14:95–99CrossRefGoogle Scholar
  42. Fu S, Meeley R, Scanlon MJ (2002) Empty pericarp2 encodes a negative regulator of the heat shock response and is required for maize embryogenesis. Plant Cell 14:3119–3132PubMedPubMedCentralCrossRefGoogle Scholar
  43. Gallavotti A, Barazesh S, Malcomber S, Hall D, Jackson D, Schmidt RJ, Mcsteen P (2008) Sparse inflorescence1 encodes a monocot-specific YUCCA-like gene required for vegetative and reproductive development in maize. Proc Natl Acad Sci U S A 105:15196–15201PubMedPubMedCentralCrossRefGoogle Scholar
  44. Gao M, Wanat J, Stinard PS, James MG, Myers AM (1998) Characterization of dull1, a maize gene coding for a novel starch synthase. Plant Cell 10:399–412PubMedPubMedCentralCrossRefGoogle Scholar
  45. Gray J, Close PS, Briggs SP, Johal GS (1997) A novel suppressor of cell death in plants encoded by the Llst1 gene of maize. Cell 89:25–31PubMedCrossRefGoogle Scholar
  46. Gross SM, Holick JB (2007) Multiple trans-sensing interactions affect meiotically heritable epigenetic states at the maize pl1 locus. Genetics 176:829–839PubMedPubMedCentralCrossRefGoogle Scholar
  47. Guan H, Liu C, Zhao Y, Zeng B, Zhao H, Jiang Y, Song W, Lai J (2012) Characterization, fine mapping and expression profiling of ragged leaves 1 in maize. Theor Appl Genet 125:1125–1135PubMedCrossRefGoogle Scholar
  48. Gutiérrez-Marcos JF, Dal Prà M, Giulini A, Costa LM, Gavazzi G, Cordelier S, Sellam O, Tatout C, Paul W, Perez P, Dickinson HG, Consonni G (2007) Empty pericarp4 encodes a mitochondrion-targeted pentatricopeptide repeat protein necessary for seed development and plant growth in maize. Plant Cell 19:196–210PubMedPubMedCentralCrossRefGoogle Scholar
  49. Halpin C, Holt K, Chojecki J, Oliver D, Chabbert B, Monties B, Edwards K, Barakate A, Foxon GA (1998) Brown-midrib maize (bm1)-a mutation affecting the cinnamyl alcohol dehydrogenase gene. Plant J 14:545–553PubMedCrossRefGoogle Scholar
  50. Hao XM, Li XW, Yang XH, Li JS (2014) Transferring a major QTL for oil content using marker-assisted backcrossing into an elite hybrid to increase the oil content in maize. Mol Breed 34:739–748CrossRefGoogle Scholar
  51. Harris LJ, Currie K, Chandler VL (1994) Large tandem duplication associated with a Mu2 insertion in Zea mays B-Peru gene. Plant Mol Biol 25:817–828PubMedCrossRefPubMedCentralGoogle Scholar
  52. He Y (2004) Mapping and analysis of the resistance of bacterial brown spot disease in maize. Dissertation, China Agricultural UniversityGoogle Scholar
  53. Hochholdinger F, Wen TJ, Zimmermann R, Chimot-Marolle P, Silva ODC, Brue W, Lamkey KR, Wienand U, Schnable PS (2008) The maize (Zea mays L.) roothairless3 gene encodes a putative GPI-anchored, monocot-specific, COBRA-like protein that significantly affects grain yield. Plant J 54:888–898PubMedPubMedCentralCrossRefGoogle Scholar
  54. Holding DR, Otegui MS, Li B, Meeley RB, Dam T, Hunter BG, Jung R, Larkins BA (2007) The maize floury1 gene encodes a novel endoplasmic reticulum protein involved in zein protein body formation. Plant Cell 19:2569–2582PubMedPubMedCentralCrossRefGoogle Scholar
  55. Hong CP, Han S, Zhang YJ, Wang LJ, Wei HZ, Zhong SY, Liu BS (2012) Genetic analysis and gene mapping of sensitivity to nicosulfuron in corn. Acta Agric Boreali Sin 27(4):149–152 (in Chinese)Google Scholar
  56. Hu YM, Tang JH, Yang H, Xie HL, Lu XM, Niu JH, Chen WC (2006) Identification and mapping of Rf-I an inhibitor of the Rf5 restorer gene for Cms-C in maize (Zea mays L.). Theor Appl Genet 113:357–360PubMedCrossRefPubMedCentralGoogle Scholar
  57. Huang RR, Zhou ZJ, Chen JF, Ding JQ, Wu JY (2012) Genetic analysis of defective kernel mutant and mapping of the mutant gene dek1-T7 in maize. Mol Plant Breed 10(2):163–168Google Scholar
  58. Huminiecki L, Bicknell R (2000) In silico cloning of novel endothelial-specific genes. Genome Res 10:1796–1806PubMedPubMedCentralCrossRefGoogle Scholar
  59. Hung HY, Shannon LM, Tian F, Bradbury PJ, Chen C, Flint-Garcia SA, McMullen MD, Ware D, Buckler ES, Doebley JF, Holland JB (2012) ZmCCT and the genetic basis of day-length adaptation underlying the postdomestication spread of maize. Proc Natl Acad Sci U S A 109(28):E1913–E1921PubMedPubMedCentralCrossRefGoogle Scholar
  60. Hurni S, Scheuermann D, Krattinger SG, Kessel B, Wicker T, Herren G, Fitze MN, Breen J, Presterl T, Ouzunova M, Keller B (2015) The maize disease resistance gene Htn1 against northern corn leaf blight encodes a wall-associated receptor-like kinase. Proc Natl Acad Sci U S A 112:8780–8785PubMedPubMedCentralCrossRefGoogle Scholar
  61. Ingvardsen CR, Xing Y, Frei UK, Lübberstedt T (2010) Genetic and physical fine mapping of Scmv2, a potyvirus resistance gene in maize. Theor Appl Genet 120:1621–1634PubMedCrossRefGoogle Scholar
  62. Irish E, Langdale JA, Nelson TM (1994) Interactions between tassel seed genes and other sex determining genes in maize. Dev Genet 15(2):155–171CrossRefGoogle Scholar
  63. Jamann TM, Luo X, Morales L, Kolkman JM, Chung CL, Nelson RJ (2016) A remorin gene is implicated in quantitative disease resistance in maize. Theor Appl Genet 129:591–602PubMedCrossRefGoogle Scholar
  64. Jamann TM, Poland JA, Kolkman JM, Smith LG, Nelson RJ (2014) Unraveling genomic complexity at a quantitative disease resistance locus in maize. Genetics 198:333–344PubMedPubMedCentralCrossRefGoogle Scholar
  65. James MG, Robertson DS, Myers AM (1995) Characterization of the maize gene sugary1, a determinant of starch composition in kernels. Plant Cell 7:417–429PubMedPubMedCentralCrossRefGoogle Scholar
  66. Je BI, Gruel J, Lee YK, Bommert P, Arevalo ED, Eveland AL, Wu Q, Goldshmidt A, Meeley R, Bartlett M, Komatsu M, Sakai H, Jönsson H, Jackson D (2016) Signaling from maize organ primordia via FASCIATED EAR3 regulates stem cell proliferation and yield traits. Nat Genet 48:785–791PubMedCrossRefGoogle Scholar
  67. Je BI, Xu F, Wu Q, Liu L, Meeley R, Gallagher JP, Corcilius L, Payne RJ, Bartlett ME, Jackson D (2018) The CLAVATA receptor FASCIATED EAR2 responds to distinct CLE peptides by signaling through two downstream effectors. Elife 7:e35673PubMedPubMedCentralCrossRefGoogle Scholar
  68. Johal GS, Briggs SP (1992) Reductase activity encoded by the HM1 disease resistance gene in maize. Science 258:985–987PubMedCrossRefGoogle Scholar
  69. Kostadinovic M, Ignjatovic-Micic D, Wancetovic J, Ristic D, Bozinovic SG, Drinic SM (2016) Development of high tryptophan maize near isogenic lines adapted to temperate regions through marker assisted selection-impediments and benefits. PLoS One 11:e0167635PubMedPubMedCentralCrossRefGoogle Scholar
  70. Kump KL, Bradbury PJ, Wisser RJ, Buckler ES, Belcher AR, Oroopeza-Rosas MA, Zwonitzer JC, McMullen MD, Ware D, Balint-Kurti PJ, Holland JB (2011) Genome-wide association study of quantitative resistance to southern leaf blight in the maize nested association mapping population. Nat Genet 43:163–168PubMedCrossRefGoogle Scholar
  71. Laudencia-Chingcuanco D, Hake S (2002) The indeterminate floral apex1 gene regulates meristem determinacy and identify in the maize inflorescence. Development 129:2629–2638PubMedGoogle Scholar
  72. Lawit SJ, Wych HM, Xu D, Kundu S, Tomes DT (2010) Maize DELLA proteins dwarf plant8 and dwarf plant9 as modulators of plant development. Plant Cell Physiol 51:1854–1868PubMedCrossRefGoogle Scholar
  73. Lawrence CJ, Seigfried TE, Brendel V (2005) The maize genetics and genomics database. The community resource for access to diverse maize data. Plant Physiol 138:55–58PubMedPubMedCentralCrossRefGoogle Scholar
  74. Li H, Peng Z, Yang X, Wang W, Fu J, Wang J, Han Y, Chai Y, Guo T, Yang N, Liu J, Warburton ML, Cheng Y, Hao X, Zhang P, Zhao J, Liu Y, Wang G, Li J, Yan J (2013a) Genome-wide association study dissects the genetic architecture of oil biosynthesis in maize kernels. Nat Genet 45(1):43–50PubMedCrossRefGoogle Scholar
  75. Li L (2011) Phenotype characterization and preliminary gene mapping of a novel bisexual mutant tassel silk florets (TSF1) in maize. Dissertation, Northwest A & F UniversityGoogle Scholar
  76. Li L, Li D, Liu S, Ma X, Dietrich CR, Hu HC, Zhang G, Liu Z, Zheng J, Wang G, Schnable PS (2013b) The maize glossy13 gene, cloned via BSR-Seq and Seq-walking encodes a putative ABC transporter required for the normal accumulation of epicuticular waxes. PLoS One 8:e82333PubMedPubMedCentralCrossRefGoogle Scholar
  77. Li P, Xiao SL, Wang SX, Liu J, Zhao XR, Chen HB (2014) Fine mapping of fertility restorer gene Rf3 of S-type cytoplasmic male sterility and candidate gene prediction in maize. Shandong Agric Sci 6(8):1–5 (in Chinese)Google Scholar
  78. Li SZ, Cao MJ, Rong TZ, Pan GT, Zhu YG (2007) SSR mapping of maize genetic male sterile gene induced by space flight. Chin High Technol Lett 17(8):869–873 (in Chinese)Google Scholar
  79. Li WH, Xu XD, Li G, Guo QL, Wu SW, Jiang Y, Dong HY, Weng ML, Jin DM, Wu YJ, Ru ZG, Wang B (2012) Characterization and molecular mapping of RsrR, a resistant gene to maize head smut. Euphytica 187:303–311CrossRefGoogle Scholar
  80. Li XH, Zhang SH, Fu JH (2000) The research on the chromosomal localization of resistance to disease and pests in maize. J Maize Sci 8(1):15–18 (in Chinese)Google Scholar
  81. Li YL, Yu YL, Liu YY, Li XH, Fu JF, Zhang ZY, Chen HQ (2008) Mapping on two maize nuclear male sterile genes by space mutagenesis using SSR markers. J Henan Agric Univ 42(3):245–249 (in Chinese)Google Scholar
  82. Li YR (2014) Etiolation mutant gene mapping via bulked segregant RNA-Seq (BSR-Seq) method in maize. Dissertation, Huazhong Agricultural UniversityGoogle Scholar
  83. Liang YH, Zhou HS, Jiang WR (2000) RFLP mapping of a male sterile gene (ms30) in maize. Acta Agron Sin 26(3):266–270 (in Chinese)Google Scholar
  84. Lid SE, Gruis D, Juang R, Lorentzen JA, Ananiev E, Chamberlin M, Niu XM, Meeley R, Nichols S, Olsen OA (2002) The defective kernel1 (dek1) gene required for aleurone cell development in the endosperm of maize grains encodes a membrane protein of the calpain gene superfamily. Proc Natl Acad Sci U S A 99:5460–5465PubMedPubMedCentralCrossRefGoogle Scholar
  85. Liu L, Du Y, Shen X, Li M, Sun W, Huang J, Liu Z, Tao Y, Zheng Y, Yan J, Zhang Z (2015) KRN4 controls quantitative variation in maize kernel row number. PLoS Genet 11(11):e1005670PubMedPubMedCentralCrossRefGoogle Scholar
  86. Liu Q, Liu H, Gong Y, Tao Y, Jiang L, Zuo W, Yang Q, Ye J, Lai J, Wu J, Lübberstedt T, Xu M (2017) An atypical thioredoxin imparts early resistance to sugarcane mosaic virus in maize. Mol Plant 10:483–497PubMedCrossRefGoogle Scholar
  87. Liu S, Dietrich CR, Schnable PS (2009) DLA-based strategies for cloning insertion mutants: cloning the gl4 locus of maize using Mu transposon tagged alleles. Genetics 183:1215–1255PubMedPubMedCentralCrossRefGoogle Scholar
  88. Liu S, Yeh CT, Tang HM, Nettleton D, Schnable PS (2012) Gene mapping via bulked segregant RNA-Seq (BSR-Seq). PLoS One 7:e36406PubMedPubMedCentralCrossRefGoogle Scholar
  89. Lu MY, Chen CX, Gao LW, Xi ZY (2012a) Fine mapping of the major QTL qph1-4 for dwarf in maize (Zea mays L.). J Henan Agric Univ 46(3):242–246 (in Chinese)Google Scholar
  90. Lu XM, Hu XJ, Zhao YZ, Song WB, Zhang M, Chen ZL, Chen W, Dong YB, Wang ZH, Lai JS (2012b) Map-based cloning of zb7 encoding an IPP and DMAPP synthase in the MEP pathway of maize. Mol Plant 5:1100–1112PubMedCrossRefGoogle Scholar
  91. Lunde C, Hake S (2009) The interaction of knotted1 and thick tassel dwarf1 in vegetative and reproductive meristems of maize. Genetics 181:1693–1697PubMedPubMedCentralCrossRefGoogle Scholar
  92. Luo HS (2013) Genetic analysis and rough mapping of maize genetic male sterile gene 8001s. Dissertation, Hunan Agricultural UniversityGoogle Scholar
  93. Lv H, Zheng J, Wang T, Fu J, Huai J, Min H, Zhang X, Tian B, Shi Y, Wang G (2014) The maize d2003, a novel allele of vp8, is required for maize internode elongation. Plant Mol Biol 84:243–257PubMedCrossRefGoogle Scholar
  94. Ma Y, Slewinski TL, Baker RF, Braun DM (2009) Tie-dyed1 encodes a novel, phloem-expressed transmembrane protein that functions in carbohydrate partitioning. Plant Physiol 149:181–194PubMedPubMedCentralCrossRefGoogle Scholar
  95. Ma ZR, Dooner HK (2004) A mutation in the nuclear-encoded plastid ribosomal protein S9 leads to early embryo lethality in maize. Plant J 37:92–103PubMedCrossRefGoogle Scholar
  96. Mace ES, Jordan DR (2010) Location of major effect genes in sorghum (Sorghum bicolor (L.) Moench). Theor Appl Genet 121:1339–1356PubMedCrossRefGoogle Scholar
  97. Maitz M, Santandrea G, Zhang Z, Lal S, Hannah LC, Salamini F, Thompson RD (2000) Rgf1, a mutation reducing grain filling in maize through effects on basal endosperm and pedicel development. Plant J 23:29–42PubMedCrossRefGoogle Scholar
  98. Makarevitch I, Thompson A, Muehlbauer GJ, Springer NM (2012) Brd1 gene in maize encodes a brassinosteroid C-6 oxidase. PLoS One 7:e30798PubMedPubMedCentralCrossRefGoogle Scholar
  99. McMullen MD (1994) Three genetic loci control resistance to wheat streak mosaic virus in the maize inbred Pa405. Mol Plant-Microbe Interact 7:708–712CrossRefGoogle Scholar
  100. McSteen P, Hake S (2001) Barren inflorescence2 regulates axillary meristem development in the maize inflorescence. Development 128:2881–2891PubMedGoogle Scholar
  101. Meyer J, Pei D, Wise RP (2011) Rf8-mediated T-urf13 transcript accumulation coincides with a pentatricopeptide repeat cluster on maize chromosome 2L. Plant Genome 4:283–299CrossRefGoogle Scholar
  102. Ming R, Brewbaker JL, Pratt RC, Musket TA, McMullen MD (1997) Molecular mapping of a major gene conferring resistance to maize mosic virus. Theor Appl Genet 95:271–275CrossRefGoogle Scholar
  103. Moose SP, Sisco PH (1996) Glossy15, an APETALA2-like gene from maize that regulates leaf epidermal cell identity. Genes Dev 10:3018–3027PubMedCrossRefGoogle Scholar
  104. Moreno MA, Harper LC, Krueger RW, Dellaporta SL, Freeling M (1997) Liguleless1 encodes a nuclear-localized protein required for induction of ligules and auricles during maize leaf organogenesis. Genes Dev 11:616–628PubMedCrossRefGoogle Scholar
  105. Mou XY, Liu Y, Wang GY, Zheng J (2014) Genetic analysis and gene mapping of a maize drought sensitive mutant. J Plant Genet Resour 15(3):615–619 (in Chinese)Google Scholar
  106. Muehlbauer GJ, Riera-Lizarazu O, Kynast RG, Martin D, Phillips RL, Rines HW (2001) A maize chromosome 3 addition line of oat exhibits expression of the maize homeobox gene liguleless3 and alteration of cell fates. Genome 43:1055–1064CrossRefGoogle Scholar
  107. Myers AM, James MG, Lin Q, Yi G, Stinard PS, Hennen-Bierwagen TA, Becraft PW (2011) Maize opaque5 encodes monogalactosyldiacylglycerol synthase and specifically affects galactolipids necessary for amyloplast and chloroplast function. Plant Cell 23:2331–2347PubMedPubMedCentralCrossRefGoogle Scholar
  108. Nardmann J, Ji J, Werr W, Scanlon MJ (2004) The maize duplicate genes narrow sheath1 and narrow sheath2 encode a conserved homeobox gene function in a lateral domain of shoot apical meristems. Development 131:2827–2839PubMedCrossRefGoogle Scholar
  109. Nash J, Luehesen KR, Walbot V (1990) Bronze-2 gene of maize: reconstruction of a wild-type allele and analysis of transcription and splicing. Plant Cell 2:1039–1049PubMedPubMedCentralCrossRefGoogle Scholar
  110. Paterson AH, Lin YR, Li Z, Schertz KF, Doebley JF, Pinson SR, Stansel JW, Irvine JE (1995) Convergent domestication of cereal crops by independent mutations at corresponding genetic loci. Science 269:1714–1718PubMedCrossRefGoogle Scholar
  111. Paz-Ares J, Ghosal D, Wienand U, Peterson PA, Saedler H (1987) The regulatory cl locus of Zea mays encodes a protein with homology to myb proto-oncogene products and with structural similarities to transcriptional activators. EMBO J 6:3553–3558PubMedPubMedCentralCrossRefGoogle Scholar
  112. Pechan T, Jiang BH, Steckler D, Ye LJ, Luthe DS, William WP (1999) Characterization of three distinct cDNA clones encoding cysteine proteinases from maize (Zea mays L.) callus. Plant Mol Biol 40:111–119PubMedCrossRefGoogle Scholar
  113. Phillps KA, Skirpan AL, Kaplinsky NJ, McSteen P (2009) Developmental disaster1: a novel mutation causing defects during vegetative and inflorescence development in maize (Zea mays, Poaceae). Am J Bot 96:420–430CrossRefGoogle Scholar
  114. Poland JA, Bradbury PJ, Buckler ES, Nelson RJ (2011) Genome-wide nested association mapping of quantitative resistance to northern leaf blight in maize. Proc Natl Acad Sci U S A 108:6893–6898PubMedPubMedCentralCrossRefGoogle Scholar
  115. Porch TG, Tseung CW, Schmelz EA, Settles AM (2006) The maize viviparous10/viviparous13 locus encodes the Cnx1 gene required for molybdenum cofactor biosynthesis. Plant J 45:250–263PubMedCrossRefGoogle Scholar
  116. Qi HY, Li WH, Fu ZY, Ding D, Hu YM, Tang JL (2013) Genetic analysis and linkage mapping of a recessive dwarf mutant in maize. J Henan Agric Univ 47(3):246–249 (in Chinese)Google Scholar
  117. Qiu LJ, Guo Y, Li Y, Wang XB, Zhou GA, Liu ZX, Zhou SR, Li XH, Ma YZ, Wang JK, Wan JM (2011) Novel gene discovery of crops in China: status, challenging, and perspective. Acta Agron Sin 37(1):1–17CrossRefGoogle Scholar
  118. Salvi S, Sponza G, Morgante M, Tomes D, Niu XM, Fengler KA, Meeley R, Ananiev EV, Svitashev S, Bruggemann E, Li BL, Hainey CF, Radovic S, Zaina G, Rafalski JA, Tingey SV, Miao GH, Phillips RL, Tuberosa R (2007) Conserved noncoding genomic sequences associated with a flowering-time quantitative trait locus in maize. Proc Natl Acad Sci U S A 104:11376–11381PubMedPubMedCentralCrossRefGoogle Scholar
  119. Salvi S, Giuliani S, Ricciolini C, Carraro N, Maccaferri M, Presterl T, Ouzunova M, Tuberosa R (2016) Two major quantitative trait loci controlling the number of seminal roots in maize co-map with the root developmental genes rtcs and rum1. J Exp Bot 67(4):1149–1159PubMedPubMedCentralCrossRefGoogle Scholar
  120. Sanz-Alferez S, Richter TE, Hulbert SH, Bennetzen JL (1995) The Rp3 disease resistance gene of maize: mapping and characterization of introgressed alleles. Theor Appl Genet 91:25–32PubMedCrossRefGoogle Scholar
  121. Schnable PS, Ware D, Fulton RS, Stein JC, Wei FS, Pasternak S, Liang CZ, Zhang JW, Fulton L, Graves TA, Minx P, Reily AD, Courtney L, Kruchowski SS, Tomlinson C, Strong C, Delehaunty K, Fronick C, Courtney B, Rock SM, Belter E, Du FY, Kim K, Abbott RM, Cotton M, Levy A, Marchetto P, Ochoa K, Jackson SM, Gillam B, Chen WZ, Yan L, Higginbotham J, Cardenas M, Waligorski J, Applebaum E, Phelps L, Falcone J, Kanchi, Thane T, Scimone A, Thane N, Henke J, Wang T, Ruppert J, Shah N, Rotter K, Hodges J, Ingenthron E, Cordes M, Kohlberg S, Sgro J, Delgado B, Mead K, Chinwalla A, Leonard S, Crouse K, Collura K, Kudrna D, Currie J, He RF, Angelova A, Rajasekar S, Mueller T, Lomeli R, Scara G, Ko A, Delaney K, Wissotski M, Lopez G, Campos D, Braidotti M, Ashley E, Golser W, Kim HR, Lee SH, Lin JK, Dujmic Z, Kim W, Talag J, Zuccolo A, Fan CZ, Sebastian A, Kramer M, Spiegel L, Nascimento L, Zutavern T, Miller B, Ambroise C, Muller S, Spooner W, Narechania A, Ren LY, Wei S, Kumari S, Faga B, Levy M, McMahan L, Buren PV, Vaughn MW, Ying K, Yeh CT, Emrich SJ, Jia Y, Kalyanaraman A, Hsia AP, Brad Barbazuk W, Baucom RS, Brutnell TP, Carpita NC, Chaparro C, Chia JM, Deragon JM, Estill JC, Yan F, Jeddeloh JA, Han YJ, Lee H, Li PH, Lisch DR, Liu SZ, Liu ZJ, Nagel DH, McCann MC, Miguel PS, Myers AM, Nettleton D, Nguyen J, Penning BW, Ponnala L, Schneider KL, Schwartz DC, Sharma A, Soderlund C, Springer NM, Sun Q, Wang H, Waterman M, Westerman R, Wolfgruber TK, Yang LX, Yu Y, Zhang LF, Zhou SG, Zhu QH, Bennetzen JL, Dawe RK, Jiang JM, Jiang N, Presting GG, Wessler SR, Aluru S, Martienssen RA, Clifton SW, McCombie WR, Wing RA, Wilson RK (2009) The B73 maize genome: complexity, diversity, and dynamics. Science 326:1112–1115PubMedCrossRefGoogle Scholar
  122. Sharma M, Cortes-Cuz M, Ahern KR, McMullen M, Brutnell TP, Chopra S (2011) Identification of the Pr1 gene product completes the anthocyanin biosynthesis pathway of maize. Genetics 188:69–79PubMedPubMedCentralCrossRefGoogle Scholar
  123. Sheehan MJ, Kennedy LM, Costich DE, Brutnell TP (2007) Subfunctionalization of PhyB1 and PhyB2 in the control seeding and mature plant traits in maize. Plant J 49:338–353PubMedCrossRefGoogle Scholar
  124. Shure M, Wessier S, Fedoroff N (1983) Molecular identification and isolation of the waxy locus in maize. Cell 35:225–233PubMedCrossRefGoogle Scholar
  125. Simcox KD, McMullen MD, Louie R (1995) Co-segregation of the maize dwarf mosaic virus resistance gene, Mdm1, with the nucleolus organizer region in maize. Theor Appl Genet 90:341–346PubMedCrossRefGoogle Scholar
  126. Sisco PH (1991) Duplications complicate genetic mapping of Rf4, a restorer for CMS-C cytoplasmic male sterility in corn. Crop Sci 31:1263–1266CrossRefGoogle Scholar
  127. Smith LG, Gerttula SM, Han SC, Levy J (2001) Tangled1: a microtubule binding protein required for the spatial control of cytokinesis in maize. J Cell Biol 152:231–236PubMedPubMedCentralCrossRefGoogle Scholar
  128. Somaratne Y, Tian Y, Zhang H, Wang M, Huo Y, Cao F, Zhao L, Chen H (2017) Abnormal Pollen Vacuolation1 (APV1) is required for male fertility by contributing to anther cuticle and pollen exine formation in maize. Plant J 90(1):96–110PubMedCrossRefGoogle Scholar
  129. Song PJ, Ji HQ, Pei DM, Hu YM (2011) Discovery and genetic analysis of a new ecological-sensitive genic male sterile line in maize. J Henan Agric Univ 45(2):133–136 (in Chinese)Google Scholar
  130. Sturaro M, Hrtings H, Schmelzer E, Velasco R, Salamini F, Motto M (2005) Cloning and characterization of glossy1, a maize gene involved in cuticle membrane and wax production. Plant Physiol 138:478–489PubMedPubMedCentralCrossRefGoogle Scholar
  131. Sullivan TD, Strelow LI, lllingworth CA, Phillips RL, Nelson OE Jr. (1991) Analysis of the maize Brittle-1 alleles and a defective suppressor-Mutator-induced mutable allele. Plant Cell 3:1337–1348Google Scholar
  132. Sun LL, Lin XE, Xie HL, Fu ZY, Tang JH (2007) The tagging molecular markers for red silk gene in maize inbred K12. J Henan Agric Univ 41(5):480–482 (in Chinese)Google Scholar
  133. Sun X, Qi W, Yue Y, Ling H, Wang G, Song R (2016) Maize ZmVPP5 is a truncated vacuole H+ -PPase that confers hypersensitivity to salt stress. J Integr Plant Biol 58(6):518–528PubMedPubMedCentralCrossRefGoogle Scholar
  134. Sun XJ (2013) Genetic analysis and map-based cloning of two endosperm mutant in maize. Dissertation, Jilin Agricultural UniversityGoogle Scholar
  135. Suzuki M, Latshaw S, Sato Y, Settles AM, Koch KE, Hannah LC, Kojima M, Sakakibara H, McCarty DR (2008) The maize viviparous8 locus, encoding a putative altered meristem program1-like peptidase, regulates abscisic acid accumulation and coordinates embryo and endosperm development. Plant Physiol 146:1193–1206PubMedPubMedCentralCrossRefGoogle Scholar
  136. Suzuki M, Settles AM, Tseung CW, Li QB, Ltshaw S, Wu S, Porch TG, Schmelz EA, James MG, McCarty DR (2006) The maize viviparous15 locus encodes the molybdopterin synthase small subunit. Plant J 45:264–274PubMedCrossRefPubMedCentralGoogle Scholar
  137. Tacke E, Korfhange C, Michel D, Maddaloni M, Motto M, Lanzini S, Salamini F, Döring HP (1995) Transponson tagging of the maize glossy2 locus with the transposable element En/Spm. Plant J 8:907–917PubMedCrossRefPubMedCentralGoogle Scholar
  138. Tan YQ, Xie CX, Jiang HY, Ye H, Xiang Y, Zhu SW, Cheng BJ (2011) Molecular mapping of genes for opposite leafing in maize using simple-sequence repeat markers. Genet Mol Res 10:3472–3479PubMedCrossRefPubMedCentralGoogle Scholar
  139. Tang HM, Liu S, Hill-Skinner S, Wu W, Reed D, Yeh CT, Nettleton D, Schnable PS (2014) The maize brown midrib2 (bm2) gene encodes a methylenetetrahydrofolate reductase that contributes to lignin accumulation. Plant J 77:380–392PubMedPubMedCentralCrossRefGoogle Scholar
  140. Tang JH, Fu ZY, Hu YM, Li JS, Sun LL, Ji HQ (2006) Genetic analyses and mapping of a new thermo-sensitive genic male sterile gene in maize. Theor Appl Genet 113:11–15PubMedCrossRefGoogle Scholar
  141. Tang JH, Liu ZH, Chen WC, Hu YM, Ji HQ, Ji YL (2001) The SSR markers of the main restorer genes for Cms-C cytoplasmic male sterility in maize. Agr Sci Chin 4(6):592–596 (in Chinese)Google Scholar
  142. Taramino G, Sauer M, Stauffer JL Jr, Multani D, Niu X, Sakai H, Hochholdinger F (2007) The maize (Zea mays L.) RTCS gene encodes a LOB domain protein that is a key regulator of embryonic seminal and post-embryonic shoot-borne root initiation. Plant J 50:649–659PubMedCrossRefGoogle Scholar
  143. Teng F, Zhai LH, Liu RX, Bai W, Wang LQ, Huo DA, Tao YS, Zheng YL, Zhang ZX (2013). ZmGA3ox2, a candidate gene for a major QTL,qPH3.1, for plant height in maize.Plant Journal, 73(3):405-416Google Scholar
  144. Thomsberry JM, Goodman MM, Doebley J, Doebley J, Kresovich S, Nielsen D, Kuckler ES 4th (2001) Dwarf8 polymorphisms associate with variation in flowering time. Nat Genet 28:286–289CrossRefGoogle Scholar
  145. Tian F, Bradbury PJ, Brown PJ, Hung H, Sun Q, Flint-Garcia S, Rocheford TR, McMullen MD, Holland JB, Buckler ES (2011) Genome-wide association study of leaf architecture in the maize nested association mapping population. Nat Genet 43:159–162PubMedCrossRefGoogle Scholar
  146. Tian Y, Xiao S, Liu J, Somaratne Y, Zhang H, Wang M, Zhang H, Zhao L, Chen H (2017) MALE STERILE6021 (MS6021) is required for the development of anther cuticle and pollen exine in maize. Sci Rep 7(1):16736PubMedPubMedCentralCrossRefGoogle Scholar
  147. Vignols F, Rigau J, Torres MA, Capellades M, Puigdomenech P (1995) The Brown Midrib3 (Bm3) mutation in maize occurs in the gene encoding caffeic acid O-methyltransferase. Plant Cell 7:407–416PubMedPubMedCentralCrossRefGoogle Scholar
  148. Vollbrecht E, Springer PS, Goh L, Buckler ES, Martienssen R (2005) Architecture of floral branch systems in maize and related grasses. Nature 436:1119–1126PubMedCrossRefGoogle Scholar
  149. Voorrips RE (2002) MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered 93:77–78CrossRefGoogle Scholar
  150. Walsh J, Waters CA, Freeling M (1997) The maize gene liguleless2 encodes a basic leucine zipper protein involved in the establishment of the leaf blade-sheath boundary. Genes Dev 12:208–218CrossRefGoogle Scholar
  151. Wang BM, Li ZX, Ran QJ, Li P, Peng ZH, Zhang JR (2018a) ZmNF-YB16 overexpression improves drought resistance and yield by enhancing photosynthesis and the antioxidant capacity of maize plants. Front Plant Sci 9:709–722PubMedPubMedCentralCrossRefGoogle Scholar
  152. Wang CJ, Nan GL, Kelliher T, Timofejeva L, Vernoud V, Golubovskaya IN, Harper L, Egger R, Walbot V, Cande WZ (2012a) Maize multiple archesporial cells1 (mac1), an ortholog of rice TDL1A, modulates cell proliferation and identity in early anther development. Development 139:2594–2603PubMedPubMedCentralCrossRefGoogle Scholar
  153. Wang G, Qi W, Wu Q, Yao D, Zhang J, Zhu J, Wang G, Wang G, Tang Y, Song R (2014) Identification and characterization of maize floury4 as a novel semidominant opaque mutant that disrupts protein body assembly. Plant Physiol 165:582–594PubMedPubMedCentralCrossRefGoogle Scholar
  154. Wang G, Sun XL, Wang GF, Wang F, Gao Q, Sun X, Tang YP, Chang C, Lai JS, Zhu LH, Xu ZK, Song RT (2011) Opaque7 encodes an acyl-activating enzyme-like protein that affects storage protein synthesis in maize endosperm. Genetics 189:1281–1295PubMedPubMedCentralCrossRefGoogle Scholar
  155. Wang G, Wang F, Wang G, Wang F, Zhang X, Zhong M, Zhang J, Lin D, Tang Y, Xu Z, Song R (2012b) Opaque1 encodes a myosin XI motor protein that is required for endoplasmic reticulum motility and protein body formation in maize endosperm. Plant Cell 24:3447–3462PubMedPubMedCentralCrossRefGoogle Scholar
  156. Wang H, Nussbaun-Wagler T, Li BL, Zhao Q, Vigouroux Y, Faller M, Bombies K, Lukens L, Deobley JF (2005) The origin of the naked grains of maize. Nature 436:714–719PubMedPubMedCentralCrossRefGoogle Scholar
  157. Wang H, Xiao ZX, Wang FG, Xiao YN, Zhao JR, Zheng YL, Qiu FZ (2012c) Mapping of HtNB, a gene conferring non-lesion resistance before heading to Exserohilum turcicum (pass.), in a maize inbred line derived from the Indonesian variety Bramadi. Genet Mol Res 11:2523–2533PubMedCrossRefGoogle Scholar
  158. Wang HQ, Wang K, Du QG, Wang YF, Fu ZY, Guo ZY, Kang DM, Li WX, Tang JH (2018b) Maize Urb2 protein is required for kernel development and vegetative growth by affecting pre-ribosomal RNA processing. New Phytol 218:1233–1246PubMedCrossRefGoogle Scholar
  159. Wang HX (2014) Genetic analysis and gene mapping of a new virescent-yellow leaf mutant in maize. Dissertation, Sichuan Agricultural UniversityGoogle Scholar
  160. Wang HY (2012) Genetic analysis and map-based cloning of maize endosperm mutant Su5. Dissertation, Jilin UniversityGoogle Scholar
  161. Wang LJ, Ha LD, Zhang SM, Xu CH, Liu BS (2008) Identification and genetic analysis of a new dwarf mutant gene in maize. Acta Agric Boreali Sin 23(5):23–25 (in Chinese)Google Scholar
  162. Wang LJ, Han S, Zhong SY, Wei HZ, Zhng YJ, Zhao Y, Liu BS (2013) Characterization and fine mapping of a necrotic leaf mutant in maize (Zea mays L.). J Genet Genom 40:307–314CrossRefGoogle Scholar
  163. Wang XL, Wang HW, Liu SX, Ferjani A, Li JS, Yan JB, Yang XH, Qin F (2016) Genetic variation in ZmVPP1 contributes to drought tolerance in maize seedlings. Nat Genet 48:1233PubMedCrossRefGoogle Scholar
  164. Wang Y, Gu RH, Chen HW, Shi HC, Yu XJ, Zhang HJ, Zhao CY, Sun Q, Ke YP (2015a) Characterization and genetic mapping of a novel recessive genic male sterile gene ms305 in maize (Zea mays L.). Israel J Plant Sci 62:208–214CrossRefGoogle Scholar
  165. Wen TJ, Hochholdinger F, Sauer M, Bruce W, Schnable PS (2005) The roothairless1 gene of maize encodes a homolog of sec3, which is involved in polar exocytosis. Plant Physicol 138:1637–1643CrossRefGoogle Scholar
  166. White SE, Doebley JF (1999) The molecular evolution of terminal ear1, a regulatory gene in the genus Zea. Genetics 153:1455–1462PubMedPubMedCentralGoogle Scholar
  167. Winkler RG, Helentijaris T (1995) The maize dwarf3 gene encodes a cytochrome P450-mediated early step in gibberellin biosynthesis. Plant Cell 7(8):1307–1317PubMedPubMedCentralCrossRefGoogle Scholar
  168. Wise RP, Schnable PS (1994) Mapping complementary genes in maize: positioning the rf1 and rf2 nuclear-fertility restorer loci of Texas (T) cytoplasm relative to RFLP and visible markers. Theor Appl Genet 88:785–795PubMedCrossRefGoogle Scholar
  169. Wisser RJ, Balint-Kurti PJ, Nelson RJ (2006) The genetic architecture of disease resistance in maize: a synthesis of published studies. Phytopathology 96:120–129PubMedCrossRefGoogle Scholar
  170. Wright AD, Moehlenkamp CA, Perrot GH, Neuffer MG, Cone KC (1992) The maize auxotrophic mutant orange pericarp is defective in duplicate genes for trytophan synthase β. Plant Cell 4:711–719PubMedPubMedCentralGoogle Scholar
  171. Wright AJ, Gallagher K, Smith LG (2009) Discordia1 and alternative discordia1 function redundantly at the cortical divison site to promote preprophase band formation and orient division planes in maize. Plant Cell 21:234–247PubMedPubMedCentralCrossRefGoogle Scholar
  172. Wu HB, Zhu RC, Zhao DG (2004) Introduction to the TILLING strategy. Mol Plant Breed 2(4):574–580Google Scholar
  173. Wu JY, Tang JH, Xia ZL, Chen WC (2002) Molecular tagging of a new resistance gene to maize dwarf mosaic virus using microsatellite markers. Acta Bot Sin 44(2):177–180 (in Chinese)Google Scholar
  174. Wu Y, Hershey H (2011) Nucleotide sequences mediating male fertility and method of using same. United States Patent: US20110173725A1Google Scholar
  175. Xi ZY, Zhang SH, Li XH, Xie CX, Li MS, Hao ZF, Zhang DG, Liang YH, Bai L, Zhang SH (2008) Identification and mapping of a novel sugarcane mosaic virus resistance gene in maize. Acta Agron Sin 34(9):1494–1499CrossRefGoogle Scholar
  176. Xu L, He Y, Zhang DF, Dai JR, Wang SC (2009) Identification and fine-mapping of a bacterial brown spot disease resistance gene in maize. Mol Breed 23:709–718CrossRefGoogle Scholar
  177. Xu X, Dietrich CR, Delledonne M, Xia Y, Wen TJ, Robertson DS, Nikolau BJ, Schnable PS (1997) Sequence analysis of the cloned glossy8 gene of maize suggests that it may code foe a β-ketoacyl reductase required for the biosynthesis of cuticular waxes. Plant Physiol 115:501–510PubMedPubMedCentralCrossRefGoogle Scholar
  178. Yang DE, Jin DM, Wang B, Zhang DS, Nguyen HT, Zhang CL, Chen SJ (2005a) Characterization and mapping of Rpi1, a gene that confers dominant resistance to stalk rot in maize. Mol Gen Genomics 274:229–234CrossRefGoogle Scholar
  179. Yang DE, Zhang CL, Zhang DS, Jin DM, Weng ML, Chen SJ, Nguyen H, Wang B (2004) Genetic analysis and molecular mapping of maize (Zea mays L.) stalk rot resistant gene Rfg1. Theor Appl Genet 108:706–711PubMedCrossRefGoogle Scholar
  180. Yang Q, Balint-Kurti P, Xu M (2017) Quantitative disease resistance: dissection and adoption in maize. Mol Plant 10:402–413PubMedCrossRefGoogle Scholar
  181. Yang W, Zheng Y, Zheng W, Feng R (2005b) Molecular genetic mapping of a high-lysine mutant gene (opaque-16) and the double recessive effect with opaque-2 in maize. Mol Breed 15:257–269CrossRefGoogle Scholar
  182. Yao GQ, Shan J, Cao B, Cui LG, Du SL, Liu TS, Li CL, Wang LM (2013) Mapping the maize southern rust resistance gene of inbred line CML 470. J Plant Genet Resour 14(3):518–522 (in Chinese)Google Scholar
  183. Yin X, Wang Q, Yang J, Jin D, Wang F, Wang B, Zhang J (2003) Fine mapping of the Ht2 (Helminthosporium turcicum resistance 2) gene in maize. Chin Sci Bull 48(2):165–169CrossRefGoogle Scholar
  184. Yu Y, Shi Z, Hu H, Li Y, Wang J (2015) Responses to nicosulfuron of hydroponic seedlings of near-isogenic lines of waxy corns with different resistances. Agric Res Arid Areas 33(2):87–90 (in Chinese)Google Scholar
  185. Zha XM (2015) Screening of insect-resistant related mutants and preliminary mapping of related genes in maize. Dissertation, Chinese Academy of Agricultural SciencesGoogle Scholar
  186. Zhang DF, Wu SW, An XL, Xie K, Dong ZY, Zhou Y, Xu LW, Fang W, Liu SS, Liu SS, Zhu TT, Li JP, Ran LQ, Zhao JR, Wan XY (2018a) Construction of a multicontrol sterility system for a maize male-sterile line and hybrid seed production based on the ZmMs7 gene encoding a PHD-finger transcription factor. Plant Biotechnol J 16:459–471PubMedCrossRefGoogle Scholar
  187. Zhang H, Liu X, Zhang YE, Jiang C, Cui DZ, Liu HH, Li DT, Wang LW, Chen TT, Ning LH, Ma X, Chen HB (2012) Genetic analysis and fine mapping of the Ga1-S gene region conferring cross-incompatibility in maize. Theor Appl Genet 124:459–465PubMedCrossRefGoogle Scholar
  188. Zhang M, Cao Y, Wang Z, Wang ZQ, Shi J, Liang X, Song W, Chen Q, Lai J, Jiang C (2018b) A retrotransposon in an HKT1 family sodium transporter causes variation of leaf Na+ exclusion and salt tolerance in maize. New Phytol 217(3):1161–1176CrossRefGoogle Scholar
  189. Zhang SS, Xi ZY, An YQ, Li MN, Xie HL, Zhang YY, Cui JX, Chen YH, Wu LC (2015) Initial genetic mapping of a tassel seed gene Ts9 in maize. J Henan Agric Univ 49(3):301–310 (in Chinese)Google Scholar
  190. Zhang XL (2013a) Resistance analysis on the northern leaf blight and southern corn rust of corn inbred lines. Dissertation, The Chinese Academy of Agriculture ScienceGoogle Scholar
  191. Zhang Y (2013b) Genetic analyses and gene tagging of maize cob color mutant obtained by radiation. Dissertation, Sichuan Agricultural UniversityGoogle Scholar
  192. Zhang Y, Xu L, Zhang DF, Dai JR, Wang SC (2010a) Mapping of southern corn rust-resistant genes in the W2D inbred line of maize (Zea mays L.). Mol Breed 25:433–439CrossRefGoogle Scholar
  193. Zhang ZM, Liu L, Wang J, Zhao MJ, Pang GT (2010b) Cloning and characterization of a senescence associated protein gene (ZmSAP) induced by Rhizoctonia solani in maize. Acta Phytopathol Sin 40(4):373–380 (in Chinese)Google Scholar
  194. Zhao JJ (2015) Mapping of a novel hermo-sensitive genic male sterile gene in maize. Chin Agric Inform 9:38–39 (in Chinese)Google Scholar
  195. Zhao PF, Zhang GB, Wu XJ, Li N, Shi DY, Zhang DF, Ji CF, Xu ML, Wang SC (2013) Fine mapping of RppP25, a southern rust resistance gene in maize. J Integr Plant Biol 55:462–472PubMedCrossRefGoogle Scholar
  196. Zhao RB, Wang YX, Ding JQ, Zhang XC, Wu JY (2011) Fine mapping of resistance gene Rscmv1 to maize dwarf mosaic virus. J Maize Sci 194(4):10–13 (in Chinese)Google Scholar
  197. Zhao XR, Tan GQ, Xing YX, Lai W, Chao Q, Zuo WL, Lübberstedt T, Xu ML (2012b) Marker-assisted introgression of qHSR1 to improve maize resistance to head smut. Mol Breed 30:1077–1088CrossRefGoogle Scholar
  198. Zhao YZ, Lu XM, Liu CX, Guan HY, Zhang M, Li ZF, Cai HW, Lai JS (2012a) Identification and fine mapping of rhm1 locus for resistance to southern corn leaf blight in maize. J Integr Plant Biol 54:321–329PubMedCrossRefGoogle Scholar
  199. Zheng PZ, Allen WB, Roesler K, Willams ME, Zhang SR, Li JM, Classman K, Ranch J, Nubel D, Solawetz W, Bhattramakki D, Llaca V, Deschamps S, Zhong GY, Tarczynski MC, Shen B (2008) A phenylalanine in DGAT is a key determinant of oil content and composition in maize. Nat Genet 40:367–372PubMedCrossRefGoogle Scholar
  200. Zhong SY, Wang HH, Zhao Y, Xu CL, Han S, Liu BS (2013) Identification and molecular mapping of an albino mutant gene as-81647 in maize (Zea mays L.). Shandong Agric Sci 45(10):12–15 (in Chinese)Google Scholar
  201. Zhou CJ, Chen CX, Cao PX, Wu SW, Sun JW, Jin DM, Wang B (2007) Characterization and fine mapping of RppQ, a resistance gene to southern corn rust in maize. Mol Gen Genomics 278:723–728CrossRefGoogle Scholar
  202. Zhou Y, Han YJ, Li ZG, Fu Y, Fu ZY, Xu ST, Li JS, Yan JB, Yang XH (2012) ZmcrtRB3 encodes a carotenoid hydroxylase that affects the accumulation of α-carotene in maize kernel. J Integr Plant Biol 54:260–269PubMedCrossRefGoogle Scholar
  203. Zhou Z, Song L, Zhang X, Li X, Yan N, Xia R, Zhu H, Weng J, Hao Z, Zhang D, Yong H, Li M, Zhang S (2016) Introgression of opaque2 into waxy maize causes extensive biochemical and proteomic changes in endosperm. PLoS One 11:e0158971PubMedPubMedCentralCrossRefGoogle Scholar
  204. Zhu CL, Zhang GR, Shao SH, Peng XH, Du JY (2010) Analysis on Silico cloning of cryptochrome1 gene from Zea Mays and bioinformatics. J Maize Sci 18(2):30–36 (in Chinese)Google Scholar
  205. Zuo WL, Chao Q, Zhang N, Ye JR, Tan GQ, Li BL, Xing YX, Zhang BQ, Liu HJ, Fengler KA, Zhang J, Zhao XR, Chen YS, Lai JS, Yan JB, Xu ML (2015) A maize wall-associated kinase confers quantitative resistance to head smut. Nat Genet 47:151–157PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Chenyu Ma
    • 1
  • Weimin Zhan
    • 1
  • Wenliang Li
    • 1
  • Mengdi Zhang
    • 1
  • Mingyang Lu
    • 1
  • Xue Xia
    • 1
  • Qinghe Bai
    • 1
  • Xi Wang
    • 1
  • Pengtao Yan
    • 1
  • Zhangying Xi
    • 1
    Email author
  1. 1.College of AgronomyHenan Agricultural UniversityZhengzhouChina

Personalised recommendations