Advertisement

Molecular Breeding

, 38:142 | Cite as

Improvement of seedling and panicle blast resistance in Xian rice varieties following Pish introgression

  • Ning Xiao
  • Yunyu Wu
  • Zhiping Wang
  • Yuhong Li
  • Cunhong Pan
  • Xiaoxiang Zhang
  • Ling Yu
  • Guangqing Liu
  • Changhai Zhou
  • Hongjuan Ji
  • Niansheng Huang
  • Min Jiang
  • Zhengyuan Dai
  • Aihong LiEmail author
Article
  • 95 Downloads

Abstract

Rice blast is a serious disease caused by the filamentous ascomycetous fungus Magnaporthe oryzae. Incorporating disease resistance genes in rice varieties and characterizing the distribution of M. oryzae isolates form the foundation for enhancing rice blast resistance. In this study, the blast resistance gene Pish was observed to be differentially distributed in the genomes of rice sub-species. Specifically, Pish was present in 80.5% of Geng varieties, but in only 2.3% of Xian varieties. Moreover, Pish conferred resistance against only 23.5% of the M. oryzae isolates from the Geng-planting regions, but against up to 63.2% of the isolates from the Xian-planting regions. Thus, Pish may be an elite resistance gene for improving rice blast resistance in Xian varieties. Therefore, near-isogenic lines (NILs) with Pish and the polygene pyramid lines (PPLs) PPLPish/Pi1, PPLPish/Pi54, and PPLPish/Pi33 in the Xian background Yangdao 6 were generated using a molecular marker-assisted selection method. The results suggested that (1) Pish significantly improved rice blast resistance in Xian varieties, which exhibited considerably improved seedling and panicle blast resistance after Pish was introduced; (2) PPLs with Pish were more effective than the NILs with Pish regarding seedling and panicle blast resistance; (3) the PPL seedling and panicle blast resistance was improved by the complementary and overlapping effects of different resistance genes; and (4) the stability of NIL and PPL resistance varied under different environmental conditions, with only PPLPish/Pi54 exhibiting highly stable resistance in three natural disease nurseries (Jianyang, Jinggangshan, and Huangshan). This study provides new blast resistance germplasm resources and describes a novel molecular strategy for enhancing rice blast resistance.

Keywords

Rice Seedling blast Panicle blast 

Notes

Funding information

This study was supported by the National Key R & D Program of China [grant numbers 2017YFD0100304 and 2017YFD0100402], the Project of Breeding of Key New Varieties in Jiangsu Province [grant number PZCZ201702], the Jiangsu Province 333 Project [grant number BRA2016145], the Natural Science Foundation of Jiangsu Province, China [grant number BK20160447], the Molecular Breeding Technology Construction of Public Service Platform, Yangzhou City [grant number YZ2017170], and the Rice Industry Technology System of Yangzhou Comprehensive Experimental Station, Yangzhou, Jiangsu Province, China (CARS-01-60).

Supplementary material

11032_2018_899_MOESM1_ESM.png (10.2 mb)
ESM 1 (PNG 10.1 MB)

References

  1. Araki E, Yanoria MJT, Ebron LA, Mercado-Escueta D, Takai T, Fukuta Y (2003) Mapping of a rice blast resistance gene Pish. Breed Res 5(Suppl 2):333Google Scholar
  2. Takahashi A, Hayashi N, Miyao A, Hirochika H (2010) Unique features of the rice blast resistance Pish locus revealed by large scale retrotransposon-tagging. BMC Plant Biol 10:175.  https://doi.org/10.1186/1471-2229-10-175 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Berruyer R, Adreit H, Milazzo J, Gaillard S, Berger A, Dioh W, Lebrun MH, Tharreau D (2003) Identification and fine mapping of Pi33, the rice resistance gene corresponding to the Magnaporthe grisea avirulence gene ACE1. Theor Appl Genet 107(6):1139–1147CrossRefGoogle Scholar
  4. Bonman JM, Maekill DJ (1988) Durable resistance to rice blast disease. Oryza 25:103–110Google Scholar
  5. Césari S, Kanzaki H, Fujiwara T, Bernoux M, Chalvon V, Kawano Y, Shimamoto K, Dodds P, Terauchi R, Kroj T (2014) The NB-LRR proteins RGA4 and RGA5 interact functionally and physically to confer disease resistance. EMBO J 33:1941–1959CrossRefGoogle Scholar
  6. Chaipanya C, Telebanco-Yanoria MJ, Quime B, Longya A, Korinsak S, Toojinda T, Vanavichit A, Jantasuriyarat C, Zhou B (2017) Dissection of broad-spectrum resistance of the Thai rice variety Jao Hom Nin conferred by two resistance genes against rice blast. Rice 10:18CrossRefGoogle Scholar
  7. Couch BC, Kohn LM (2002) A multilocus gene genealogy concordant with host preference indicates segregation of a new species, Magnaporthe oryzae, from M. grisea. Mycologia 94:683–693CrossRefGoogle Scholar
  8. Deng Y, Zhai K, Xie Z, Yang D, Zhu X, Liu J, Wang X, Qin P, Yang Y, Zhang G, Li Q, Zhang J, Wu S, Milazzo J, Mao B, Wang E, Xie H, Tharreau D, He Z (2017) Epigenetic regulation of antagonistic receptors confers rice blast resistance with yield balance. Science 355:962–965CrossRefGoogle Scholar
  9. Divya B, Biswas A, Robin S, Rabindran R, Joel AJ (2014) Gene interactions and genetics of blast resistance and yield attributes in rice (Oryza sativa L.). J Genet 93:415–424CrossRefGoogle Scholar
  10. Ellur RK, Khanna A, Yadav A, Pathania S, Rajashekara H, Singh VK, Gopala Krishnan S, Bhowmick PK, Nagarajan M, Vinod KK, Prakash G, Mondal KK, Singh NK, Vinod Prabhu K, Singh AK (2016) Improvement of Basmati rice varieties for resistance to blast and bacterial blight diseases using marker assisted backcross breeding. Plant Sci 242:330–341CrossRefGoogle Scholar
  11. Ezuka A (1972) Field resistance of rice varieties to rice blast disease. Rev Plant Protect Res 5:1–21Google Scholar
  12. Fukuta Y, Yanoria MJ, Mercado-Escueta D, Ebron LA, Fujita Y, Araki E, Khush GS (2004) Quantitative trait loci (QTL) reaction to rice blast isolates from Japan and the Philippines. Rice Blast: Interaction with Rice and Control, Proceeding of the 3rd International Rice Blast Conference. Kluwer Academic Publishers, pp. 113–121Google Scholar
  13. Hittalmani S, Parco A, Mew T, Zeigler R, Huang N (2000) Fine mapping and DNA marker-assisted pyramiding of the three major genes for blast resistance in rice. Theor Appl Genet 100:1121–1128CrossRefGoogle Scholar
  14. Jiang H, Feng Y, Bao L, Li X, Gao G, Zhang Q, Xiao J, Xu C, He Y (2012) Improving blast resistance of Jin 23B and its hybrid rice by marker-assisted gene pyramiding. Mol Breed 30:1679–1688CrossRefGoogle Scholar
  15. Hua L, Wu J, Chen C, Wu W, He X, Lin F, Wang L, Ashikawa I, Matsumoto T, Wang L (2012) The isolation of Pi1, an allele at the Pik locus which confers broad spectrum resistance to rice blast. Theor Appl Genet 125:1047–1055CrossRefGoogle Scholar
  16. Liang Y, Yan BY, Peng YL, Ji ZJ, Zeng YX, Wu HL, Yang CD (2017) Molecular screening of blast resistance genes in rice germplasms resistant to Magnaporthe oryzae. Rice 24(1):41–47Google Scholar
  17. Lu YJ, Zheng KL (1992) A simple method for extracting rice DNA. Chin J Rice Sci 6(1):47–48Google Scholar
  18. Lou CP, Ni L, Chen ZY et al (2009) Inoculation and identification techniques for rice blast and resistance screening of cultivars from Jiangsu rice regional test in 2009. Jiangsu Agric Sci 6:178–179Google Scholar
  19. Mackill D, Bonman J (1992) Inheritance of blast resistance in near-isogenic lines of rice. Phytopathology 82:746–749CrossRefGoogle Scholar
  20. Qu SH, Liu GF, Zhou B, Bellizzi M, Zeng LR, Dai LY, Han B, Wang GL (2006) The broad-spectrum blast resistance gene Pi9 encodes a nucleotide-binding site-leucine-rich repeat protein and is a member of a multigene family in rice. Genetics 172:1901–1914CrossRefGoogle Scholar
  21. Ray S, Singh PK, Gupta DK, Mahato AK, Sarkar C, Rathour R, Singh NK, Sharma TR (2016) Analysis of Magnaporthe oryzae genome reveals a fungal effector, which is able to induce resistance response in transgenic rice line containing resistance gene, Pi54. Front Plant Sci 7:1140PubMedPubMedCentralGoogle Scholar
  22. Rai AK, Kumar SP, Gupta SK, Gautam N, Singh NK, Sharma TR (2011) Functional complementation of rice blast resistance gene Pi-k h (Pi54) conferring resistance to diverse strains of Magnaporthe oryzae. J Plant Biochem Biotechnol 20:55–65CrossRefGoogle Scholar
  23. Shen MG, Lin JY (1994) The economic impact of rice blast disease in China. In: Zeigier RS, Leong SA, Teng PS (eds) Rice blast disease. Uk CAB international, England, pp 321–331Google Scholar
  24. Su J, Wang W, Han J, Chen S, Wang C, Zeng L, Feng A, Yang J, Zhou B, Zhu X (2015) Functional divergence of duplicated genes results in a novel blast resistance gene Pi50 at the Pi2/9 locus. Theor Appl Genet 128:2213–2225CrossRefGoogle Scholar
  25. Umakanth B, Vishalakshi B, Sathish Kumar P, Rama Devi SJS, Bhadana VP, Senguttuvel P, Kumar S, Sharma SK, Sharma PK, Prasad MS, Madhav MS (2017) Front Plant Sci 29(8):1500.  https://doi.org/10.3389/fpls.2017.01500 CrossRefGoogle Scholar
  26. Wang BH, Daniel JE, Wang ZH (2017) The arms race between Magnaporthe oryzae and rice: diversity and interaction of Avr and R genes. J Integr Agric 16(12):2746–2760CrossRefGoogle Scholar
  27. Wang GL, Mackill DJ, Bonman M, McCouch SR, Champoux MC, Nelson RJ (1994) RFLP mapping of genes conferring complete and partial resistance to blast in a durably resistant rice cultivar. Genetics 136:1421–1434PubMedPubMedCentralGoogle Scholar
  28. Wang R, Ning Y, Shi X, He F, Zhang C, Fan J, Jiang N, Zhang Y, Zhang T, Hu Y, Bellizzi M, Wang GL (2016) Immunity to rice blast disease by suppression of effector-triggered necrosis. Curr Biol 26:2399–2411CrossRefGoogle Scholar
  29. Wu Y, Xiao N, Yu L, Pan C, Li Y, Zhang X, Liu G, Dai Z, Pan X, Li A (2015) Combination patterns of major R genes determine the level of resistance to the M. oryzae in rice (Oryza sativa L.). PLoS One 10:e0126130CrossRefGoogle Scholar
  30. Wu Y, Chen Y, Pan C, Xiao N, Li Y, Zhang X, Pan X, Chen X, Liang C, Dai Z, Li A (2017) Development and evaluation of near-isogenic lines with different blast resistance alleles at the Piz locus in japonica rice from the lower region of the Yangtze River, China. Plant Dis 101:1283–1291CrossRefGoogle Scholar
  31. Xiao N, Wu Y, Pan C, Yu L, Chen Y, Liu G, Li Y, Zhang X, Wang Z, Dai Z, Liang C, Li A (2016) Improving of rice blast resistances in japonica by pyramiding major R genes. Front Plant Sci 7:1918PubMedGoogle Scholar
  32. Yadav MKSA, Ngangkham U, Shubudhi HN, Bag MK, Adak T, Munda S, Samantaray S, Jena M (2017) Use of molecular markers in identification and characterization of resistance to rice blast in India. PLoS One 12(4):e0176236CrossRefGoogle Scholar
  33. Zhai C, Lin F, Dong ZQ, He XY, Yuan B, Zeng XS, Wang L, Pan QH (2011) The isolation and characterization of Pik, a rice blast resistance gene which emerged after rice domestication. New Phytol 189:321–334CrossRefGoogle Scholar
  34. Zhao T, Rui L, Li J, Nishimura MT, Vogel JP, Liu N, Liu S, Zhao Y, Dangl JL, Tang D (2015) A truncated NLR protein, TIR-NBS2, is required for activated defense responses in the exo70B1 mutant. PLoS Genet 11:e1004945CrossRefGoogle Scholar
  35. Zhong Z, Chen M, Lin L, Han Y, Bao J, Tang W, Lin Y, Somai R, Lu L, Zhang W, Chen J, Hong Y, Chen X, Wang B, Shen WC, Lu G, Norvienyeku J, Ebbole DJ, Wang Z (2018) Population genomic analysis of the rice blast fungus reveals specific events associated with expansion of three main clades. ISME J 12:1867–1878.  https://doi.org/10.1038/s41396-018-0100-6 CrossRefPubMedPubMedCentralGoogle Scholar
  36. Zhou B, Qu S, Liu G, Dolan M, Sakai H, Lu G, Bellizzi M, Wang GL (2006) The eight amino-acid differences within three leucine-rich repeats between Pi2 and Piz-t resistance proteins determine the resistance specificity to Magnaporthe grisea. Mol Plant-Microbe Interact 19:1216–1228CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  • Ning Xiao
    • 1
    • 2
    • 3
    return OK on get
  • Yunyu Wu
    • 1
    • 2
    • 3
  • Zhiping Wang
    • 1
    • 2
    • 3
  • Yuhong Li
    • 1
    • 2
    • 3
  • Cunhong Pan
    • 1
    • 2
    • 3
  • Xiaoxiang Zhang
    • 1
    • 2
    • 3
  • Ling Yu
    • 1
    • 2
    • 3
  • Guangqing Liu
    • 1
    • 2
    • 3
  • Changhai Zhou
    • 1
    • 2
    • 3
  • Hongjuan Ji
    • 1
    • 2
    • 3
  • Niansheng Huang
    • 1
    • 2
    • 3
  • Min Jiang
    • 1
    • 2
    • 3
  • Zhengyuan Dai
    • 1
    • 2
    • 3
  • Aihong Li
    • 1
    • 2
    • 3
    Email author
  1. 1.Institute of Agricultural Sciences for Lixiahe Region in JiangsuYangzhouChina
  2. 2.Jiangsu Collaborative Innovation Center for Modern Crop ProductionNanjingChina
  3. 3.National Rice Industry Technology System of Yangzhou Comprehensive Experimental StationYangzhouChina

Personalised recommendations