Advertisement

Molecular Breeding

, 38:141 | Cite as

Sequence diversity of five Medicago sativa genes involved in agronomic traits to set up allele mining in breeding

  • Camille Gréard
  • Philippe Barre
  • Sandrine Flajoulot
  • Sylvain Santoni
  • Bernadette JulierEmail author
Article
  • 109 Downloads

Abstract

Lucerne (Medicago sativa) is an autotetraploid forage legume, whose breeding mainly relies on phenotypic recurrent selection to create synthetic populations. Allele mining could be a strategy to take advantage of the large genetic diversity of the species. This paper reports the polymorphism of five genes impacting the phenotype for selected traits: CAD1 and CCoaOMT (digestibility), CONSTANS-like (forage yield), NHX1 (salt tolerance), and WXP1 (drought tolerance). Complete genes were sequenced for 387 genotypes of 43 cultivated accessions and 20 genotypes of wild accessions. Wild versus cultivated polymorphism were compared, adaptive evolution was evaluated by comparing M. sativa and Medicago truncatula sequences and variants of the cultivated pool were characterized. We showed that the wild pool was more variable than the cultivated pool, with 36.6% and 8.4% of the variants that were specific to the wild pool and the cultivated pool, respectively. This result confirmed a bottleneck effect during domestication and selection. We also found that CAD1, CCoaOMT, and NHX1 were under a strong purifying selection and contained few non-synonymous variants (8, 5, and 8, respectively), while CONSTANS-like and WXP1 were under a less pronounced purifying selection and were more polymorphic (45 and 91 non-synonymous variants, respectively). This result suggests that adaptive evolution could be an indicator of expected polymorphism. The application of allele mining strategy for plant breeding in autotetraploid species is discussed.

Keywords

Abiotic stress tolerance Alfalfa Candidate gene Lignin Mutation Quality 

Notes

Acknowledgements

We thank the Association Nationale de la Recherche et de la Technologie (ANRT) for support to the PhD grant of C. Gréard. Technical staffs of INRA Lusignan, INRA Montpellier, Jouffray-Drillaud and GIE GRASS are acknowledged.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

11032_2018_898_MOESM1_ESM.pdf (406 kb)
ESM 1 (PDF 406 kb)
11032_2018_898_MOESM2_ESM.docx (15 kb)
ESM 2 (DOCX 14 kb)

References

  1. Annicchiarico P, Barrett B, Brummer EC, Julier B, Marshall AH (2015) Achievements and challenges in improving temperate perennial forage legumes. Crit Rev Plant Sci 34:327–380.  https://doi.org/10.1080/07352689.2014.898462 CrossRefGoogle Scholar
  2. Bagavathiannan MV, Julier B, Barre P, Gulden RH, van Acker RC (2010) Genetic diversity of feral alfalfa (Medicago sativa L.) populations occurring in Manitoba, Canada and comparison with alfalfa cultivars: an analysis using SSR markers and phenotypic traits. Euphytica 173:419–432.  https://doi.org/10.1007/s10681-010-0156-5 CrossRefGoogle Scholar
  3. Barker DG, Bianchi S, Blondon F, Dattée Y, Duc G, Essad S, Flament P, Gallusci P, Génier G, Guy P, Muel X, Tourneur J, Dénarié J, Huguet T (1990) Medicago truncatula, a model plant for studying the molecular genetics of the Rhizobium-legume symbiosis. Plant Mol Biol Report 8:40–49.  https://doi.org/10.1007/BF02668879 CrossRefGoogle Scholar
  4. Baucher M, Bernard-vailhé MA, Chabbert B et al (1999) Down-regulation of cinnamyl alcohol dehydrogenase in transgenic alfalfa (Medicago sativa L.) and the effect on lignin composition and digestibility. Plant Mol Biol 39:437–447.  https://doi.org/10.1023/A:1006182925584 CrossRefPubMedGoogle Scholar
  5. Bierne N, Eyre-Walker A (2004) The genomic rate of adaptive amino acid substitution in Drosophila. Mol Biol Evol 21:1350–1360.  https://doi.org/10.1093/molbev/msh134 CrossRefPubMedGoogle Scholar
  6. Bigot R (2002) L’opinion et les comportements des français en matière d’environnement. CREDOC-IFEN https://www.credoc.fr/publications/lopinion-et-les-comportements-des-francais-en-matiere-denvironnement. Accessed 2 Nov 2018
  7. Branca A, Paape TD, Zhou P, Briskine R, Farmer AD, Mudge J, Bharti AK, Woodward JE, May GD, Gentzbittel L, Ben C, Denny R, Sadowsky MJ, Ronfort J, Bataillon T, Young ND, Tiffin P (2011) Whole-genome nucleotide diversity, recombination, and linkage disequilibrium in the model legume Medicago truncatula. Proc Natl Acad Sci 201104032:E864–E870.  https://doi.org/10.1073/pnas.1104032108 CrossRefGoogle Scholar
  8. Bredahl L (2001) Determinants of consumer attitudes and purchase intentions with regard to genetically modified food—results of a Cross-National Survey. J Consum Policy 24:23–61.  https://doi.org/10.1023/A:1010950406128 CrossRefGoogle Scholar
  9. Buckler ES, Thornsberry JM, Kresovich S (2001) Molecular diversity, structure and domestication of grasses. Genet Res 77:213–218.  https://doi.org/10.1017/S0016672301005158 CrossRefPubMedGoogle Scholar
  10. Casa AM, Mitchell SE, Hamblin MT, Sun H, Bowers JE, Paterson AH, Aquadro CF, Kresovich S (2005) Diversity and selection in sorghum: simultaneous analyses using simple sequence repeats. Theor Appl Genet 111:23–30.  https://doi.org/10.1007/s00122-005-1952-5 CrossRefPubMedGoogle Scholar
  11. Chen L, Auh C, Chen F, Cheng X, Aljoe H, Dixon RA, Wang Z (2002) Lignin deposition and associated changes in anatomy, enzyme activity, gene expression, and ruminal degradability in stems of tall fescue at different developmental stages. J Agric Food Chem 50:5558–5565.  https://doi.org/10.1021/jf020516x CrossRefPubMedGoogle Scholar
  12. Choi H-K, Kim D, Uhm T, Limpens E, Lim H, Mun JH, Kalo P, Penmetsa RV, Seres A, Kulikova O, Roe BA, Bisseling T, Kiss GB, Cook DR (2004) A sequence-based genetic map of Medicago truncatula and comparison of marker colinearity with M. sativa. Genetics 166:1463–1502.  https://doi.org/10.1534/genetics.166.3.1463 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Comai L, Young K, Till BJ, Reynolds SH, Greene EA, Codomo CA, Enns LC, Johnson JE, Burtner C, Odden AR, Henikoff S (2004) Efficient discovery of DNA polymorphisms in natural populations by ecotilling. Plant J 37:778–786.  https://doi.org/10.1111/j.0960-7412.2003.01999.x CrossRefPubMedGoogle Scholar
  14. Crossa J (1989) Methodologies for estimating the sample size required for genetic conservation of outbreeding crops. Theor Appl Genet 77:153–161Google Scholar
  15. Cui GH, Feng H, Li WY, Wang WY, Huang LQ (2010) Cloning and polymorphism analysis of SmERF in Salvia miltiorrhiza. Yao Xue Xue Bao 45:1188–1193PubMedGoogle Scholar
  16. Debellé F, Belser C, Aury J, Labadie K, Roux B, Sallet E, Carrere S, Wincker P, Schiex T, Julier B, Gamas P, Gouzy J (2012) Genomic resources for functional analysis in Medicago truncatula and related crop species. VI International Conference on Legume Genetics and Genomics. Hyderabad, October 2–7, 2012, P-NGG09Google Scholar
  17. Egea R, Casillas S, Barbadilla A (2008) Standard and generalized McDonald–Kreitman test: a website to detect selection by comparing different classes of DNA sites. Nucleic Acids Res 36:W157–W162.  https://doi.org/10.1093/nar/gkn337 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Fariza MSN, Pang SL, Choong CY, Wickneswari R (2008) Extensive DNA sequence variations in two lignin genes, cinnamate 4-hydroxylase and cinnamyl alcohol dehydrogenase from Acacia mangium and Acacia auriculiformis. J Biol Sci 8:687–690.  https://doi.org/10.3923/jbs.2008.687.690 CrossRefGoogle Scholar
  19. Fay JC, Wyckoff GJ, Wu C-I (2001) Positive and negative selection on the human genome. Genetics 158:1227–1234PubMedPubMedCentralGoogle Scholar
  20. Flajoulot S, Ronfort J, Baudouin P, Barre P, Huguet T, Huyghe C, Julier B (2005) Genetic diversity among alfalfa (Medicago sativa) cultivars coming from a breeding program, using SSR markers. Theor Appl Genet 111:1420–1429.  https://doi.org/10.1007/s00122-005-0074-4 CrossRefPubMedGoogle Scholar
  21. Frankel OH, Brown AHD, Burdon JJ (1995) The conservation of plant biodiversity. Cambridge University PressGoogle Scholar
  22. Gaxiola RA, Rao R, Sherman A, Grisafi P, Alper SL, Fink GR (1999) The Arabidopsis thaliana proton transporters, AtNhx1 and Avp1, can function in cation detoxification in yeast. Proc Natl Acad Sci 96:1480–1485.  https://doi.org/10.1073/pnas.96.4.1480 CrossRefPubMedGoogle Scholar
  23. Grima-Pettenati J, Feuillet C, Goffner D, Borderies G, Boudet AM (1993) Molecular cloning and expression of a Eucalyptus gunnii cDNA clone encoding cinnamyl alcohol dehydrogenase. Plant Mol Biol 21:1085–1095.  https://doi.org/10.1007/BF00023605 CrossRefPubMedGoogle Scholar
  24. Guillet-Claude C, Birolleau-Touchard C, Manicacci D, Fourmann M, Barraud S, Carret V, Martinant JP, Barrire Y (2004) Genetic diversity associated with variation in silage corn digestibility for three O-methyltransferase genes involved in lignin biosynthesis. Theor Appl Genet 110:126–135.  https://doi.org/10.1007/s00122-004-1808-4 CrossRefPubMedGoogle Scholar
  25. Guo DJ, Chen F, Inoue K et al (2001) Downregulation of caffeic acid 3-O-methyltransferase and caffeoyl CoA 3-O-methyltransferase in transgenic alfalfa: impacts on lignin structure and implications for the biosynthesis of G and S lignin. Plant Cell 13:73–88.  https://doi.org/10.1105/tpc.13.1.73 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Halligan DL, Keightley PD (2006) Ubiquitous selective constraints in the Drosophila genome revealed by a genome-wide interspecies comparison. Genome Res 16:875–884.  https://doi.org/10.1101/gr.5022906 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Haudry A, Cenci A, Ravel C, Bataillon T, Brunel D, Poncet C, Hochu I, Poirier S, Santoni S, Glémin S, David J (2007) Grinding up wheat: a massive loss of nucleotide diversity since domestication. Mol Biol Evol 24:1506–1517.  https://doi.org/10.1093/molbev/msm077 CrossRefPubMedGoogle Scholar
  28. Herrmann D, Barre P, Santoni S, Julier B (2010) Association of a CONSTANS-LIKE gene to flowering and height in autotetraploid alfalfa. Theor Appl Genet 121:865–876.  https://doi.org/10.1007/s00122-010-1356-z CrossRefPubMedGoogle Scholar
  29. Hyten DL, Song Q, Zhu Y, Choi IY, Nelson RL, Costa JM, Specht JE, Shoemaker RC, Cregan PB (2006) Impacts of genetic bottlenecks on soybean genome diversity. Proc Natl Acad Sci 103:16666–16671.  https://doi.org/10.1073/pnas.0604379103 CrossRefPubMedGoogle Scholar
  30. Jackson LA, Shadle GL, Zhou R, Nakashima J, Chen F, Dixon RA (2008) Improving saccharification efficiency of alfalfa stems through modification of the terminal stages of monolignol biosynthesis. BioEnergy Res 1:180–192.  https://doi.org/10.1007/s12155-008-9020-z CrossRefGoogle Scholar
  31. Jiang Q, Zhang J, Guo X et al (2010) Improvement of drought tolerance in white clover (Trifolium repens) by transgenic expression of a transcription factor gene WXP1. Funct Plant Biol 37:157–165CrossRefGoogle Scholar
  32. Julier B (2012) Alfalfa breeding benefits from genetic analyses on Medicago truncatula. In: Proceedings of the 7th International Symposium on the Molecular Breeding of Forage and Turf. USDA-ARS, Washington (Etats-Unis) 978–1–4675-4762-8, Salt Lake City, pp 17–19Google Scholar
  33. Julier B, Huyghe C, Ecalle C (2000) Within- and among-cultivar genetic variation in alfalfa. Forage Quality, Morphology, and Yield Crop Sci 40:365–369.  https://doi.org/10.2135/cropsci2000.402365x CrossRefGoogle Scholar
  34. Julier B, Gastal F, Louarn G et al (2017) Lucerne (Alfalfa) in European cropping systems. In: Legumes in cropping systems. D Murphy-Bokern, FL Stoddard and CA Watson (Eds), CABI Publishing, Wallingford, p 168–191Google Scholar
  35. Julier B, Lambroni P, Delaunay S et al (2018) Use of GBS markers to distinguish among lucerne varieties, with comparison to morphological traits. Mol Breed 38:133Google Scholar
  36. Jung H-JG, Samac DA, Sarath G (2012) Modifying crops to increase cell wall digestibility. Plant Sci 185–186:65–77.  https://doi.org/10.1016/j.plantsci.2011.10.014 CrossRefPubMedGoogle Scholar
  37. Kilian B, Özkan H, Walther A et al (2007) Molecular diversity at 18 loci in 321 wild and 92 domesticate lines reveal no reduction of nucleotide diversity during Triticum monococcum (Einkorn) domestication: implications for the origin of agriculture. Mol Biol Evol 24:2657–2668.  https://doi.org/10.1093/molbev/msm192 CrossRefPubMedGoogle Scholar
  38. Kimura M (1983) The neutral theory of molecular evolution. Cambridge University Press, New York, p 367Google Scholar
  39. Korber B (2001) HIV signature and sequence variation analysis. In: GH Learn Jr. (Ed) Computational and evolutionary analysis of HIV. Kluwer Academic Publishers, Boston, AG Rodrigo, p 55–72Google Scholar
  40. Kumar GR, Sakthivel K, Sundaram RM, Neeraja CN, Balachandran SM, Rani NS, Viraktamath BC, Madhav MS (2010) Allele mining in crops: prospects and potentials. Biotechnol Adv 28:451–461.  https://doi.org/10.1016/j.biotechadv.2010.02.007 CrossRefPubMedGoogle Scholar
  41. Lagercrantz U, Axelsson T (2000) Rapid evolution of the family of CONSTANS LIKE genes in plants. Mol Biol Evol 17:1499–1507.  https://doi.org/10.1093/oxfordjournals.molbev.a026249 CrossRefPubMedGoogle Scholar
  42. Li X, Brummer EC (2012) Applied genetics and genomics in alfalfa breeding. Agronomy 2:40–61.  https://doi.org/10.3390/agronomy2010040 CrossRefGoogle Scholar
  43. Li X, Tan L, Zhu Z, Huang H, Liu Y, Hu S, Sun C (2009) Patterns of nucleotide diversity in wild and cultivated rice. Plant Syst Evol 281:97–106.  https://doi.org/10.1007/s00606-009-0191-7 CrossRefGoogle Scholar
  44. Li X, Acharya A, Farmer AD, Crow JA, Bharti AK, Kramer RS, Wei Y, Han Y, Gou J, May GD, Monteros MJ, Brummer E (2012) Prevalence of single nucleotide polymorphism among 27 diverse alfalfa genotypes as assessed by transcriptome sequencing. BMC Genomics 13:568.  https://doi.org/10.1186/1471-2164-13-568 CrossRefPubMedPubMedCentralGoogle Scholar
  45. Mandel JR, Dechaine JM, Marek LF, Burke JM (2011) Genetic diversity and population structure in cultivated sunflower and a comparison to its wild progenitor, Helianthus annuus L. Theor Appl Genet 123:693–704.  https://doi.org/10.1007/s00122-011-1619-3 CrossRefPubMedGoogle Scholar
  46. McDonald JH, Kreitman M (1991) Adaptive protein evolution at the Adh locus in Drosophila. Nature 351:652–654.  https://doi.org/10.1038/351652a0 CrossRefPubMedGoogle Scholar
  47. McKie JH, Jaouhari R, Douglas KT et al (1993) A molecular model for cinnamyl alcohol dehydrogenase, a plant aromatic alcohol dehydrogenase involved in lignification. Biochim Biophys Acta Protein Struct Mol Enzymol 1202:61–69.  https://doi.org/10.1016/0167-4838(93)90063-W CrossRefGoogle Scholar
  48. Meyermans H, Morreel K, Lapierre C, Pollet B, de Bruyn A, Busson R, Herdewijn P, Devreese B, van Beeumen J, Marita JM, Ralph J, Chen C, Burggraeve B, van Montagu M, Messens E, Boerjan W (2000) Modifications in lignin and accumulation of phenolic glucosides in poplar xylem upon down-regulation of caffeoyl-coenzyme A O-methyltransferase, an enzyme involved in lignin biosynthesis. J Biol Chem 275:36899–36909.  https://doi.org/10.1074/jbc.M006915200 CrossRefPubMedGoogle Scholar
  49. Muller M-H (2002) Flux de gènes et domestication: l’histoire évolutive d’un complexe sauvage-cultivé. Approches expérimentale et théorique chez la luzerne pérenne (Medicago sativa L. ). PhD Thesis, Université de Montpellier II, p 103Google Scholar
  50. Muller M-H, Prosperi JM, Santoni S, Ronfort J (2001) How mitochondrial DNA diversity can help to understand the dynamics of wild-cultivated complexes. The case of Medicago sativa in Spain. Mol Ecol 10:2753–2763.  https://doi.org/10.1046/j.0962-1083.2001.01400.x CrossRefPubMedGoogle Scholar
  51. Muller M-H, Prosperi JM, Santoni S, Ronfort J (2003) Inferences from mitochondrial DNA patterns on the domestication history of alfalfa (Medicago sativa). Mol Ecol 12:2187–2199.  https://doi.org/10.1046/j.1365-294X.2003.01897.x CrossRefPubMedGoogle Scholar
  52. Muller M-H, Poncet C, Prosperi J et al (2006) Domestication history in the Medicago sativa species complex: inferences from nuclear sequence polymorphism. Mol Ecol 15:1589–1602.  https://doi.org/10.1111/j.1365-294X.2006.02851.x CrossRefPubMedGoogle Scholar
  53. Nass R, Cunningham KW, Rao R (1997) Intracellular sequestration of sodium by a novel Na+/H+ exchanger in yeast is enhanced by mutations in the plasma membrane H+-ATPase insights into mechanisms of sodium tolerance. J Biol Chem 272:26145–26152.  https://doi.org/10.1074/jbc.272.42.26145 CrossRefPubMedGoogle Scholar
  54. Nei M, Gojobori T (1986) Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions. Mol Biol Evol 3:418–426.  https://doi.org/10.1093/oxfordjournals.molbev.a040410 CrossRefPubMedGoogle Scholar
  55. Parsch J, Meiklejohn CD, Hartl DL (2013) Inferring evolutionary history through inter- and intraspecific DNA sequence comparison: the Drosophila janus and ocnus genes. In: Madame Curie Bioscience Database [Internet]. Austin (TX): Landes Bioscience; 2000-2013. Available from: https://www.ncbi.nlm.nih.gov/books/NBK6313/. Accessed 07 Nov 2018
  56. Parvathi K, Chen F, Guo D, Blount JW, Dixon RA (2001) Substrate preferences of O-methyltransferases in alfalfa suggest new pathways for 3-O-methylation of monolignols. Plant J 25:193–202.  https://doi.org/10.1111/j.1365-313X.2001.00956.x CrossRefPubMedGoogle Scholar
  57. Pauly L, Flajoulot S, Garon J, Julier B, Béguier V, Barre P (2012) Detection of favorable alleles for plant height and crown rust tolerance in three connected populations of perennial ryegrass (Lolium perenne L.). Theor Appl Genet 124:1139–1153.  https://doi.org/10.1007/s00122-011-1775-5 CrossRefPubMedGoogle Scholar
  58. Pierre J-B, Bogard M, Herrmann D, Huyghe C, Julier B (2010) A CONSTANS-like gene candidate that could explain most of the genetic variation for flowering date in Medicago truncatula. Mol Breed 28:25–35.  https://doi.org/10.1007/s11032-010-9457-6 CrossRefGoogle Scholar
  59. Poke FS, Vaillancourt RE, Elliott RC, Reid JB (2003) Sequence variation in two lignin biosynthesis genes, cinnamoyl CoA reductase (CCR) and cinnamyl alcohol dehydrogenase 2 (CAD2). Mol Breed 12:107–118.  https://doi.org/10.1023/A:1026006828721 CrossRefGoogle Scholar
  60. Putterill J, Robson F, Lee K, Simon R, Coupland G (1995) The CONSTANS gene of arabidopsis promotes flowering and encodes a protein showing similarities to zinc finger transcription factors. Cell 80:847–857.  https://doi.org/10.1016/0092-8674(95)90288-0 CrossRefPubMedGoogle Scholar
  61. Sakiroglu M, Sherman-Broyles S, Story A, Moore KJ, Doyle JJ, Charles Brummer E (2012) Patterns of linkage disequilibrium and association mapping in diploid alfalfa (M. sativa L.). Theor Appl Genet 125:577–590.  https://doi.org/10.1007/s00122-012-1854-2 CrossRefPubMedPubMedCentralGoogle Scholar
  62. Shi H, Zhu J-K (2002) Regulation of expression of the vacuolar Na+/H+ antiporter gene AtNHX1 by salt stress and abscisic acid. Plant Mol Biol 50:543–550CrossRefGoogle Scholar
  63. Sinskaya EN (1950) Flora of cultivated plants of the USSR XIII. Perennial leguminous plants. Part 1. Medic, sweetclover, fenugreek. Israel Program for Scientific Translations, Jerusalem, p 661Google Scholar
  64. Suárez-López P, Wheatley K, Robson F, Onouchi H, Valverde F, Coupland G (2001) CONSTANS mediates between the circadian clock and the control of flowering in Arabidopsis. Nature 410:1116–1120.  https://doi.org/10.1038/35074138 CrossRefPubMedGoogle Scholar
  65. Tenaillon MI, U’Ren J, Tenaillon O, Gaut BS (2004) Selection versus demography: a multilocus investigation of the domestication process in maize. Mol Biol Evol 21:1214–1225.  https://doi.org/10.1093/molbev/msh102 CrossRefPubMedGoogle Scholar
  66. Vanholme B, Cesarino I, Goeminne G, Kim H, Marroni F, van Acker R, Vanholme R, Morreel K, Ivens B, Pinosio S, Morgante M, Ralph J, Bastien C, Boerjan W (2013) Breeding with rare defective alleles (BRDA): a natural Populus nigra HCT mutant with modified lignin as a case study. New Phytol 198:765–776.  https://doi.org/10.1111/nph.12179 CrossRefPubMedGoogle Scholar
  67. Wang Y, Jia Q, Zhang L, Zhang Z, Zhang H (2015) Allelic variation in cinnamyl alcohol dehydrogenase (LoCAD) associated with wood properties of Larix olgensis. Forests 6:1649–1665.  https://doi.org/10.3390/f6051649 CrossRefGoogle Scholar
  68. Wu Y, Meng K, Liang X (2017) Distinct patterns of natural selection in Na+/H+ antiporter genes in Populus euphratica and Populus pruinosa. Ecol Evol 7:82–91.  https://doi.org/10.1002/ece3.2639 CrossRefPubMedGoogle Scholar
  69. Wunderlich S, Gatto KA (2015) Consumer perception of genetically modified organisms and sources of Information123. Adv Nutr 6:842–851.  https://doi.org/10.3945/an.115.008870 CrossRefPubMedPubMedCentralGoogle Scholar
  70. Yang Q, Wu M, Wang P, Kang J, Zhou X (2005) Cloning and expression analysis of a vacuolar Na+/H+ antiporter gene from alfalfa. DNA Seq 16:352–357.  https://doi.org/10.1080/10425170500272742 CrossRefPubMedGoogle Scholar
  71. Young ND, Debellé F, Oldroyd GED, Geurts R, Cannon SB, Udvardi MK, Benedito VA, Mayer KFX, Gouzy J, Schoof H, van de Peer Y, Proost S, Cook DR, Meyers BC, Spannagl M, Cheung F, de Mita S, Krishnakumar V, Gundlach H, Zhou S, Mudge J, Bharti AK, Murray JD, Naoumkina MA, Rosen B, Silverstein KAT, Tang H, Rombauts S, Zhao PX, Zhou P, Barbe V, Bardou P, Bechner M, Bellec A, Berger A, Bergès H, Bidwell S, Bisseling T, Choisne N, Couloux A, Denny R, Deshpande S, Dai X, Doyle JJ, Dudez AM, Farmer AD, Fouteau S, Franken C, Gibelin C, Gish J, Goldstein S, González AJ, Green PJ, Hallab A, Hartog M, Hua A, Humphray SJ, Jeong DH, Jing Y, Jöcker A, Kenton SM, Kim DJ, Klee K, Lai H, Lang C, Lin S, Macmil SL, Magdelenat G, Matthews L, McCorrison J, Monaghan EL, Mun JH, Najar FZ, Nicholson C, Noirot C, O’Bleness M, Paule CR, Poulain J, Prion F, Qin B, Qu C, Retzel EF, Riddle C, Sallet E, Samain S, Samson N, Sanders I, Saurat O, Scarpelli C, Schiex T, Segurens B, Severin AJ, Sherrier DJ, Shi R, Sims S, Singer SR, Sinharoy S, Sterck L, Viollet A, Wang BB, Wang K, Wang M, Wang X, Warfsmann J, Weissenbach J, White DD, White JD, Wiley GB, Wincker P, Xing Y, Yang L, Yao Z, Ying F, Zhai J, Zhou L, Zuber A, Dénarié J, Dixon RA, May GD, Schwartz DC, Rogers J, Quétier F, Town CD, Roe BA (2011) The Medicago genome provides insight into the evolution of rhizobial symbioses. Nature 480:520–524.  https://doi.org/10.1038/nature10625 CrossRefPubMedPubMedCentralGoogle Scholar
  72. Zhang J-Y, Broeckling CD, Blancaflor EB, Sledge MK, Sumner LW, Wang ZY (2005) Overexpression of WXP1, a putative Medicago truncatula AP2 domain-containing transcription factor gene, increases cuticular wax accumulation and enhances drought tolerance in transgenic alfalfa (Medicago sativa). Plant J 42:689–707.  https://doi.org/10.1111/j.1365-313X.2005.02405.x CrossRefPubMedGoogle Scholar
  73. Zhang J-Y, Broeckling CD, Sumner LW, Wang Z-Y (2007) Heterologous expression of two Medicago truncatula putative ERF transcription factor genes, WXP1 and WXP2, in Arabidopsis led to increased leaf wax accumulation and improved drought tolerance, but differential response in freezing tolerance. Plant Mol Biol 64:265–278.  https://doi.org/10.1007/s11103-007-9150-2 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.P3F, INRALusignanFrance
  2. 2.Jouffray-DrillaudSaint SauvantFrance
  3. 3.GIE GRASSSaint SauvantFrance
  4. 4.AGAP, INRAMontpellierFrance

Personalised recommendations