Advertisement

Molecular Breeding

, 38:89 | Cite as

Training genomic selection models across several breeding cycles increases genetic gain in oil palm in silico study

  • David Cros
  • Billy Tchounke
  • Léontine Nkague-Nkamba
Article

Abstract

Genomic selection (GS) is expected to increase the rate of genetic gain in oil palm. In a GS scheme, breeding cycles with progeny tests (phenotypic selection, PS) used to calibrate the GS predictive model and for selection alternate with GS cycles, making it possible to train the GS model with aggregated data from several cycles. To evaluate this possibility, we simulated four cycles of hybrid breeding for bunch production and compared two methods of calibrating the GS model, one using aggregated data from the two most recent cycles (Tr2Gen), the other using data from the last cycle (Tr1Gen). We also compared a GS scheme with two PS cycles and two GS cycles (2PT-2noPT), and a scheme with PS every other cycle and GS otherwise (PT-noPT). We showed that Tr2Gen had a 10.7% higher genetic gain per cycle than Tr1Gen, mostly due to increased selection accuracy, particularly in across-cycle selection, despite the decreased relationship between training individuals and selection candidates. After four cycles, Tr2Gen had a 5% higher cumulative genetic gain than Tr1Gen, with a lower coefficient of variation. PT-noPT benefited more from the advantages offered by Tr2Gen than 2PT-2noPT. Over four breeding cycles, combining PT-noPT and Tr2Gen largely outperformed conventional reciprocal recurrent selection (RRS), with an increase in annual genetic gain ranging from 37.6 to 57.5%, depending on the number of GS candidates. This study confirms the advantages of GS over RRS and indicated that oil palm breeders should train GS models using all data from past breeding cycles.

Keywords

Genomic selection Oil palm Reciprocal recurrent selection Simulation Training population 

Notes

Acknowledgments

We thank two anonymous reviewers for their helpful comments.

Funding information

This work was partly funded by a grant from PalmElit SAS. It was also supported by the CIRAD-UMR AGAP HPC Data Center of the South Green Bioinformatics platform (http://www.southgreen.fr/) and by the CETIC (African Center of Excellence in Information and Communication Technologies).

Supplementary material

11032_2018_850_MOESM1_ESM.docx (201 kb)
ESM 1 (DOCX 201 kb)
11032_2018_850_MOESM2_ESM.docx (202 kb)
ESM 2 (DOCX 202 kb)
11032_2018_850_MOESM3_ESM.docx (202 kb)
ESM 3 (DOCX 202 kb)
11032_2018_850_MOESM4_ESM.docx (200 kb)
ESM 4 (DOCX 199 kb)
11032_2018_850_MOESM5_ESM.docx (31 kb)
ESM 5 (DOCX 30 kb)
11032_2018_850_MOESM6_ESM.docx (16 kb)
ESM 6 (DOCX 15 kb)
11032_2018_850_MOESM7_ESM.docx (21 kb)
ESM 7 (DOCX 20 kb)

References

  1. Albrecht T, Wimmer V, Auinger H-J, Erbe M, Knaak C, Ouzunova M, Simianer H, Schön CC (2011) Genome-based prediction of testcross values in maize. Theor Appl Genet 123:339–350CrossRefPubMedGoogle Scholar
  2. Auinger H-J, Schönleben M, Lehermeier C, Schmidt M, Korzun V, Geiger HH, Piepho HP, Gordillo A, Wilde P, Bauer E, Schön CC (2016) Model training across multiple breeding cycles significantly improves genomic prediction accuracy in rye (Secale cereale L.). Theor Appl Genet 129:2043–2053.  https://doi.org/10.1007/s00122-016-2756-5 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Billotte N, Marseillac N, Risterucci A-M, Adon B, Brottier P, Baurens FC, Singh R, Herran A, Asmady H, Billot C, Amblard P, Durand-Gasselin T, Courtois B, Asmono D, Cheah SC, Rohde W, Ritter E, Charrier A (2005) Microsatellite-based high density linkage map in oil palm (Elaeis guineensis Jacq.). Theor Appl Genet 110:754–765.  https://doi.org/10.1007/s00122-004-1901-8 CrossRefPubMedGoogle Scholar
  4. Corley R, Tinker P (2016) Selection and breeding. In: The oil palm, 5th edn. Wiley-Blackwell, Chichester, UK, p. 138–207Google Scholar
  5. Coster A, Bastiaansen J (2010) HaploSim: R package version 1.8.4. http://CRAN.R-project.org/package=HaploSim
  6. Cros D, Sánchez L, Cochard B, Samper P, Denis M, Bouvet JM, Fernández J (2014) Estimation of genealogical coancestry in plant species using a pedigree reconstruction algorithm and application to an oil palm breeding population. Theor Appl Genet 127:981–994.  https://doi.org/10.1007/s00122-014-2273-3 CrossRefPubMedGoogle Scholar
  7. Cros D, Denis M, Bouvet J-M, Sanchez L (2015a) Long-term genomic selection for heterosis without dominance in multiplicative traits: case study of bunch production in oil palm. BMC Genomics 16:651CrossRefPubMedPubMedCentralGoogle Scholar
  8. Cros D, Denis M, Sánchez L, Cochard B, Flori A, Durand-Gasselin T, Nouy B, Omoré A, Pomiès V, Riou V, Suryana E, Bouvet JM (2015b) Genomic selection prediction accuracy in a perennial crop: case study of oil palm (Elaeis guineensis Jacq.). Theor Appl Genet 128:397–410.  https://doi.org/10.1007/s00122-014-2439-z CrossRefPubMedGoogle Scholar
  9. Cros D, Bocs S, Riou V, Ortega-Abboud E, Tisné S, Argout X, Pomiès V, Nodichao L, Lubis Z, Cochard B, Durand-Gasselin T (2017) Genomic preselection with genotyping-by-sequencing increases performance of commercial oil palm hybrid crosses. BMC Genomics 18:839.  https://doi.org/10.1186/s12864-017-4179-3 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Daetwyler HD, Calus MPL, Pong-Wong R, de los Campos G, Hickey JM (2013) Genomic prediction in animals and plants: simulation of data, validation, reporting, and benchmarking. Genetics 193:347–365.  https://doi.org/10.1534/genetics.112.147983 CrossRefPubMedPubMedCentralGoogle Scholar
  11. Denis M, Bouvet J-M (2013) Efficiency of genomic selection with models including dominance effect in the context of Eucalyptus breeding. Tree Genet Genomes 9:37–51.  https://doi.org/10.1007/s11295-012-0528-1 CrossRefGoogle Scholar
  12. Durand-Gasselin T, Blangy L, Picasso C, de Franqueville H, Breton F, Amblard P, Cochard B, Louise C, Nouy B (2010) Sélection du palmier à huile pour une huile de palme durable et responsabilité sociale. OCL 17:385–392CrossRefGoogle Scholar
  13. Falconer D, Mackay T (1996) Introduction to quantitative genetics, 4th edn. Longman, Harlow, 464 pGoogle Scholar
  14. Gallais A (2009) Hétérosis et variétés hybrides en amélioration des plantes. Quae éditions, Versailles, France, 376 pGoogle Scholar
  15. Gascon JP, de Berchoux C (1964) Caractéristique de la production d’Elaeis guineensis (Jacq.) de diverses origines et de leurs croisements—application à la sélection du palmier à huile. Oléagineux 19:75–84Google Scholar
  16. Gascon JP, Noiret JM, Bénard G (1966) Contribution à l’étude de l’hérédité de la production de régimes d’Elaeis guineensis Jacq.—application à la sélection du palmier à huile. Oléagineux 21:657–661Google Scholar
  17. Gilmour AR, Gogel BJ, Cullis BR, Thompson R (2009) ASReml user guide release 3.0, Queensland Department of Primary Industries and Fisheries, Australia, 148 pGoogle Scholar
  18. Gowda M, Zhao Y, Wurschum T et al (2014) Relatedness severely impacts accuracy of marker-assisted selection for disease resistance in hybrid wheat. Heredity 112:552–561CrossRefPubMedGoogle Scholar
  19. Grattapaglia D (2014) Breeding forest trees by genomic selection: current progress and the way forward. In: Genomics of plant genetic resources, Springer Netherlands. Tuberosa R, Graner A, Frison E, p. 651–682Google Scholar
  20. Guillot G, Mortier F, Estoup A (2005) Geneland: a computer package for landscape genetics. Mol Ecol Notes 5:712–715.  https://doi.org/10.1111/j.1471-8286.2005.01031.x CrossRefGoogle Scholar
  21. Habier D, Fernando RL, Dekkers JCM (2007) The impact of genetic relationship information on genome-assisted breeding values. Genetics 177:2389–2397.  https://doi.org/10.1534/genetics.107.081190 PubMedPubMedCentralCrossRefGoogle Scholar
  22. Henderson CR (1975) Best linear unbiased estimation and prediction under a selection model. Biometrics 31:423–447CrossRefPubMedGoogle Scholar
  23. Jan HU, Abbadi A, Lücke S, Nichols RA, Snowdon RJ (2016) Genomic prediction of testcross performance in canola (Brassica napus). PLoS One 11:e0147769.  https://doi.org/10.1371/journal.pone.0147769 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Kwong QB, Ong AL, Teh CK, Chew FT, Tammi M, Mayes S, Kulaveerasingam H, Yeoh SH, Harikrishna JA, Appleton DR (2017) Genomic selection in commercial perennial crops: applicability and improvement in oil palm (Elaeis guineensis Jacq.). Sci Rep 7:2872.  https://doi.org/10.1038/s41598-017-02602-6 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Lorenz AJ, Smith KP (2015) Adding genetically distant individuals to training populations reduces genomic prediction accuracy in barley. Crop Sci 55:2657–2667.  https://doi.org/10.2135/cropsci2014.12.0827 CrossRefGoogle Scholar
  26. Lorenz AJ, Chao S, Asoro FG, et al (2011) Genomic selection in plant breeding: knowledge and prospects. In: Donald L. Sparks (ed) Advances in agronomy. Academic Press, , p. 77–123Google Scholar
  27. Marchal A, Legarra A, Tisné S, Carasco-Lacombe C, Manez A, Suryana E, Omoré A, Nouy B, Durand-Gasselin T, Sánchez L, Bouvet JM, Cros D (2016) Multivariate genomic model improves analysis of oil palm (Elaeis guineensis Jacq.) progeny tests. Mol Breed 36:1–13.  https://doi.org/10.1007/s11032-015-0423-1 CrossRefGoogle Scholar
  28. Meunier J, Gascon J (1972) Le schéma général d’amélioration du palmier à huile à l’IRHO. Oléagineux 27:1–12Google Scholar
  29. Meuwissen THE, Hayes BJ, Goddard ME (2001) Prediction of total genetic value using genome-wide dense marker maps. Genetics 157:1819–1829PubMedPubMedCentralGoogle Scholar
  30. Neyhart JL, Tiede T, Lorenz AJ, Smith KP (2017) Evaluating methods of updating training data in long-term genomewide selection. G3 GenesGenomesGenetics 7:1499–1510.  https://doi.org/10.1534/g3.117.040550 CrossRefGoogle Scholar
  31. Pszczola M, Strabel T, Mulder HA, Calus MPL (2012) Reliability of direct genomic values for animals with different relationships within and to the reference population. J Dairy Sci 95:389–400.  https://doi.org/10.3168/jds.2011-4338 CrossRefPubMedGoogle Scholar
  32. R Core Team (2016) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria, https://www.R-project.org
  33. Schnell FW, Cockerham CC (1992) Multiplicative vs. arbitrary gene action in heterosis. Genetics 131:461–469PubMedPubMedCentralGoogle Scholar
  34. Soh AC, Mayes S, Roberts JA (2017a) Oil palm breeding: genetics and genomics. CRC Press, Boca Raton 446 pCrossRefGoogle Scholar
  35. Soh AC, Mayes S, Roberts JA et al (2017b) Breeding plans and selection methods. In: Soh AC, Mayes S, Roberts JA (eds) Oil palm breeding: genetics and genomics. CRC Press, Boca Raton, pp 143–163CrossRefGoogle Scholar
  36. Stuber CW, Cockerham CC (1966) Gene effects and variances in hybrid populations. Genetics 54:1279–1286PubMedPubMedCentralGoogle Scholar
  37. USDA (2017) Oilseeds: world market and trade. Foreign Agricultural Service, Circular Series May 2017. https://apps.fas.usda.gov/psdonline/circulars/oilseeds.pdf
  38. VanRaden PM (2007) Genomic measures of relationship and inbreeding. Interbull Bull 37:33–36Google Scholar
  39. Wong CK, Bernardo R (2008) Genomewide selection in oil palm: increasing selection gain per unit time and cost with small populations. Theor Appl Genet 116:815–824.  https://doi.org/10.1007/s00122-008-0715-5 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.CIRAD, UMR AGAPYaoundéCameroon
  2. 2.Amélioration Génétique et Adaptation des PlantesCirad-Bios, UMR AGAPMontpellier cedex 5France
  3. 3.AGAP, CIRAD, INRA, Montpellier SupAgroUniversity of MontpellierMontpellierFrance
  4. 4.CETIC (African Center of Excellence in Information and Communication Technologies)University of Yaoundé 1YaoundéCameroon
  5. 5.Higher Teacher Training College, Department of MathematicUniversity of Yaoundé 1YaoundéCameroon

Personalised recommendations