Advertisement

Molecular Breeding

, 38:7 | Cite as

Identification of main effect and epistatic quantitative trait loci for morphological and yield-related traits in peanut (Arachis hypogaea L.)

  • Yogendra Khedikar
  • Manish K. Pandey
  • V. Sujay
  • Sube Singh
  • Spurthi N. Nayak
  • Henry W. Klein-Gebbinck
  • Cholin Sarvamangala
  • Ganapati Mukri
  • Vanika Garg
  • Hari D. Upadhyaya
  • H. L. Nadaf
  • M. V. C. Gowda
  • Rajeev K. Varshney
  • Ramesh S. Bhat
Article
  • 381 Downloads

Abstract

An effort was made in the present study to identify the main effect and epistatic quantitative trait locus (QTL) for the morphological and yield-related traits in peanut. A recombinant inbred line (RIL) population derived from TAG 24 × GPBD 4 was phenotyped in seven environments at two locations. QTL analysis with available genetic map identified 62 main-effect QTLs (M-QTLs) for ten morphological and yield-related traits with the phenotypic variance explained (PVE) of 3.84–15.06%. Six major QTLs (PVE > 10%) were detected for PLHT, PPP, YPP, and SLNG. Stable M-QTLs appearing in at least two environments were detected for PLHT, LLN, YPP, YKGH, and HSW. Five M-QTLs governed two traits each, and 16 genomic regions showed co-localization of two to four M-QTLs. Intriguingly, a major QTL reported to be linked to rust resistance showed pleiotropic effect for yield-attributing traits like YPP (15.06%, PVE) and SLNG (13.40%, PVE). Of the 24 epistatic interactions identified across the traits, five interactions involved six M-QTLs. Three interactions were additive × additive and remaining two involved QTL × environment (QE) interactions. Only one major M-QTL governing PLHT showed epistatic interaction. Overall, this study identified the major M-QTLs for the important productivity traits and also described the lack of epistatic interactions for majority of them so that they can be conveniently employed in peanut breeding.

Keywords

Peanut QTL analysis Epistatic interaction Agro-morphological traits Yield 

Notes

Acknowledgements

This work has been undertaken as part of the CGIAR Research Program on Grain Legumes. ICRISAT is a member of CGIAR Consortium. The authors would like to thank Erin Higgins for valuable comments to improve the quality of the manuscript.

Funding information

The work presented in this article is a contribution from research projects sponsored by National Funds for Basic Strategic and Frontier Application Research in Agriculture (NFBSFARA) of Indian Council of Agricultural Research (ICAR), New Delhi, India, and World Bank assisted Karnataka Watershed Development Project-II (KWDP-II) funded by Government of Karnataka (GoK), India.

Compliance with ethical standards

Competing interests

The authors declare that they have no competing interests.

Supplementary material

11032_2017_764_MOESM1_ESM.pdf (154 kb)
Supplementary Figure S1 Heatmap of Pearson’s correlation coefficients (r) for all the traits in each environment. The significant correlations are color-coded. (PDF 154 kb)
11032_2017_764_MOESM2_ESM.pdf (101 kb)
Supplementary Figure S2 Major effect QTLs detected for agro-morphological traits among the RILs of peanut. (PDF 101 kb)
11032_2017_764_MOESM3_ESM.pdf (157 kb)
Supplementary Figure S3 QTL cartographer plot showing co-mapped QTLs for different agro-morphological traits among the RILs of peanut. (PDF 157 kb)
11032_2017_764_MOESM4_ESM.xlsx (15 kb)
Supplementary Table S1 (XLSX 14 kb)
11032_2017_764_MOESM5_ESM.xlsx (17 kb)
Supplementary Table S2 (XLSX 17 kb)
11032_2017_764_MOESM6_ESM.xlsx (17 kb)
Supplementary Table S3 (XLSX 16 kb)

References

  1. Bertioli DJ, Cannon SB, Froenicke L, Huang G, Farmer AD, Cannon EK, Liu X, Gao D, Clevenger J, Dash S, Ren L, Moretzsohn MC, Shirasawa K, Huang W, Vidigal B, Abernathy B, Chu Y, Niederhuth CE, Umale P, Araujo AC, Kozik A, Do Kim K, Burow MD, Varshney RK, Wang X, Zhang X, Barkley N, Guimaraes PM, Isobe S, Guo B, Liao B, Stalker HT, Schmitz RJ, Scheffler BE, Leal-Bertioli SC, Xun X, Jackson SA, Michelmore R, Ozias-Akins P (2016) The genome sequences of Arachis duranensis and Arachis ipaensis, the diploid ancestors of cultivated peanut. Nat Genet 48(4):438–446.  https://doi.org/10.1038/ng.3517 CrossRefPubMedGoogle Scholar
  2. Bocianowski J (2013) Epistasis interaction of QTL effects as a genetic parameter influencing estimation of the genetic additive effect. Genet Mol Biol 36(1):093–100.  https://doi.org/10.1590/S1415-47572013000100013 CrossRefGoogle Scholar
  3. Carlborg Ö, Haley CS (2004) Epistasis: too often neglected in complex trait studies? Nat Rev Genet 5(8):618–625.  https://doi.org/10.1038/nrg1407 CrossRefPubMedGoogle Scholar
  4. Chen W, Jiao Y, Cheng L, Huang L, Liao B, Tang M, Ren X, Zhou X, Chen Y, Jiang H (2016a) Quantitative trait locus analysis for pod-and kernel-related traits in the cultivated peanut (Arachis hypogaea L.) BMC Genet 17(1):25.  https://doi.org/10.1186/s12863-016-0337-x CrossRefPubMedPubMedCentralGoogle Scholar
  5. Chen X, Li H, Pandey MK, Yang Q, Wang X, Garg V, Chi X, Doddamani D, Hong Y, Upadhyaya H, Guo H, Khan AW, Zhu F, Zhang X, Pan L, Pierce GJ, Zhou G, Krishnamohan KA, Chen M, Zhong N, Agarwal G, Li S, Chitikineni A, Zhang GQ, Sharma S, Chen N, Liu H, Janila P, Wang M, Wang T, Sun J, Li X, Li C, Yu L, Wen S, Singh S, Yang Z, Zhao J, Zhang C, Yu Y, Bi J, Liu ZJ, Paterson AH, Wang S, Liang X, Varshney RK, Yu S (2016b) Draft genome of the peanut A-genome progenitor (Arachis duranensis) provides insights into geocarpy, oil biosynthesis, and allergens. Proc Natl Acad Sci 113(24):6785–6790.  https://doi.org/10.1073/pnas.1600899113 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Dwivedi S, Thendapani K, Nigam S (1989) Heterosis and combining ability studies and relationship among fruit and seed characters in peanut. Peanut Sci 16(1):14–20.  https://doi.org/10.3146/i0095-3679-16-1-4 CrossRefGoogle Scholar
  7. FAOSTAT (2016) FAO statistical database. http://faostat.fao.org
  8. Gautami B, Pandey MK, Vadez V, Nigam SN, Ratnakumar P, Krishnamurthy L, Radhakrishnan T, Gowda MV, Narasu ML, Hoisington DA, Knapp SJ, Varshney RK (2012) Quantitative trait locus analysis and construction of consensus genetic map for drought tolerance traits based on three recombinant inbred line populations in cultivated groundnut (Arachis hypogaea L.) Mol Breed 30(2):757–772.  https://doi.org/10.1007/s11032-011-9660-0 CrossRefPubMedGoogle Scholar
  9. GenStat Committee (2010) Genstat v12.2, VSN International. http://www.vsni.co.uk/downloads/genstat/12th-edition-upgrade
  10. Gowda MVC, Motagi BN, Naidu GK, Diddimani SB, Sheshagiri R (2002) GPBD 4: a spanish bunch groundnut genotype resistant to rust and late leaf spot. Int Arachis News Lett 22:29–32Google Scholar
  11. Hake AA, Shirasawa K, Yadawad A, Sukruth M, Patil M, Nayak SN, Lingaraju S, Patil PV, Nadaf HL, Gowda MVC, Bhat RS (2017) Mapping of important taxonomic and productivity traits using genic and non-genic transposable element markers in peanut (Arachis hypogaea L.) PLoS One 12(10):e0186113.  https://doi.org/10.1371/journal.pone.0186113 eCollection 2017CrossRefPubMedPubMedCentralGoogle Scholar
  12. Han S, Liu H, Yan M, Qi F, Wang Y, Sun Z, Huang B, Dong W, Tang F, Zhang X (2017) Differential gene expression in leaf tissues between mutant and wild-type genotypes response to late leaf spot in peanut (Arachis hypogaea L.) PLoS One 12(8):e0183428.  https://doi.org/10.1371/journal.pone.0183428 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Khedikar Y, Gowda MVC, Sarvamangala C, Patgar K, Upadhyaya HD, Varshney R (2010) A QTL study on late leaf spot and rust revealed one major QTL for molecular breeding for rust resistance in groundnut (Arachis hypogaea L.) Theor Appl Genet 121(5):971–984.  https://doi.org/10.1007/s00122-010-1366-x CrossRefPubMedPubMedCentralGoogle Scholar
  14. Kolekar RM, Sujay V, Shirasawa K, Sukruth M, Khedikar YP, Gowda MVC, Pandey MK, Varshney RK, Bhat RS (2016) QTL mapping for late leaf spot and rust resistance using an improved genetic map and extensive phenotypic data on a recombinant inbred line population in peanut (Arachis hypogaea L.) Euphytica 209(1):147–156.  https://doi.org/10.1007/s10681-016-1651-0 CrossRefGoogle Scholar
  15. Kolekar RM, Sukruth M, Nadaf HL, Motagi BN, Lingaraju S, Patil PV, Bhat RS (2017) Marker-assisted backcrossing to develop foliar disease resistant genotypes in TMV 2 variety of peanut (Arachis hypogaea L.). Plant Breed.  https://doi.org/10.1111/pbr.12549
  16. Kover PX, Valdar W, Trakalo J, Scarcelli N, Ehrenreich IM, Purugganan MD, Durrant C, Mott R (2009) A multiparent advanced generation inter-cross to fine-map quantitative traits in Arabidopsis thaliana. PLoS Genet 5(7):e1000551.  https://doi.org/10.1371/journal.pgen.1000551 CrossRefPubMedPubMedCentralGoogle Scholar
  17. Layrisse A, Wynne J, Isleib T (1980) Combining ability for yield, protein and oil of peanut lines from South American centers of diversity. Euphytica 29(3):561–570.  https://doi.org/10.1007/BF00023203 CrossRefGoogle Scholar
  18. Luo H, Ren X, Li Z, Xu Z, Li X, Huang L, Zhou X, Chen Y, Chen W, Lei Y, Liao B, Pandey MK, Varshney RK, Guo B, Jiang X, Liu F, Jiang H (2017a) Co-localization of major quantitative trait loci for pod size and weight to a 3.7 cM interval on chromosome A05 in cultivated peanut (Arachis hypogaea L.) BMC Genomics 18(1):58.  https://doi.org/10.1186/s12864-016-3456-x CrossRefPubMedPubMedCentralGoogle Scholar
  19. Luo H, Xu Z, Li Z, Li X, Lv J, Ren X, Huang L, Zhou X, Chen Y, Yu J (2017b) Development of SSR markers and identification of major quantitative trait loci controlling shelling percentage in cultivated peanut (Arachis hypogaea L.). Theor Appl Genet 1–14Google Scholar
  20. Pandey MK, Upadhyaya HD, Rathore A, Vadez V, Sheshshaye MS, Sriswathi M, Govil M, Kumar A, Gowda MVC, Shivali S, Hamidou F, Anil Kumar V, Khera P, Bhat RS, Khan Amir W, Sube S, Hongjie L, Emmanuel M, Nadaf HL, Mukri G, Liang X, Jackson S, Varshney RK (2014a) Genomewide association studies for 50 agronomic traits in peanut using the reference set comprising 300 genotypes from 48 countries of semi-arid tropics of the world. PLoS One 9(8):e105228.  https://doi.org/10.1371/journal.pone.0105228 CrossRefPubMedPubMedCentralGoogle Scholar
  21. Pandey MK, Wang ML, Qiao L, Feng S, Khera P, Wang H, Tonnis B, Barkley NA, Wang J, Holbrook CC (2014b) Identification of QTLs associated with oil content and mapping FAD2 genes and their relative contribution to oil quality in peanut (Arachis hypogaea L.) BMC Genet 15(1):133.  https://doi.org/10.1186/s12863-014-0133-4 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Pandey MK, Agarwal G, Kale SM, Clevenger J, Nayak SN, Sriswathi M, Chitikineni A, Chavarro C, Chen X, Upadhyaya HD (2017a) Development and evaluation of a high density genotyping ‘Axiom_Arachis’ array with 58 K SNPs for accelerating genetics and breeding in groundnut. Sci Rep 7:40577.  https://doi.org/10.1038/srep40577 CrossRefPubMedPubMedCentralGoogle Scholar
  23. Pandey MK, Khan AW, Singh VK, Vishwakarma MK, Shasidhar Y, Kumar V, Garg V, Bhat RS, Chitikineni A, Janila P, Guo B, Varshney RK (2017b) QTL-seq approach identified genomic regions and diagnostic markers for rust and late leaf spot resistance in groundnut (Arachis hypogaea L.) Plant Biotechnol J 15(8):927–941.  https://doi.org/10.1111/pbi.12686 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Patil S, Kale D, Deshmukh S, Fulzele G, Weginwar B (1995) Semi-dwarf, early maturing and high yielding new groundnut variety, TAG-24. J Oilseeds Res 12:254–257Google Scholar
  25. R Core Team (2013) R: A language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  26. Ravi K, Vadez V, Isobe S, Mir RR, Guo Y, Nigam SN, Gowda MVC, Radhakrishnan T, Bertioli DJ, Knapp SJ (2011) Identification of several small main-effect QTLs and a large number of epistatic QTLs for drought tolerance related traits in groundnut (Arachis hypogaea L.) Theor Appl Genet 122(6):1119–1132.  https://doi.org/10.1007/s00122-010-1517-0 CrossRefPubMedGoogle Scholar
  27. Sujay V, Gowda MVC, Pandey MK, Bhat RS, Khedikar YP, Nadaf HL, Gautami B, Sarvamangala C, Lingaraju S, Radhakrishan T, Knapp SJ, Varshney RK (2012) QTL analysis and construction of consensus genetic map for foliar disease resistance based on two RIL populations in cultivated groundnut (Arachis hypogaea L.) Mol Breed 30(2):773–788.  https://doi.org/10.1007/s11032-011-9661-z CrossRefPubMedGoogle Scholar
  28. Sukruth M, Paratwagh SA, Sujay V, Varshakumari, Gowda MVC, Nadaf HL, Motagi BN, Lingaraju S, Pandey MK, Varshney RK, Bhat RS (2015) Validation of markers linked to late leaf spot and rust resistance, and selection of superior genotypes among diverse recombinant inbred lines and backcross lines in peanut (Arachis hypogaea L.) Euphytica 204(2):343–351.  https://doi.org/10.1007/s10681-014-1339-2 CrossRefGoogle Scholar
  29. Upadhyaya HD, Nigam S (1998) Epistasis for vegetative and reproductive traits in peanut. Crop Sci 38(1):44–49.  https://doi.org/10.2135/cropsci1998.0011183X003800010008x CrossRefGoogle Scholar
  30. Varshney RK, Mohan SM, Gaur PM, Gangarao N, Pandey MK, Bohra A, Sawargaonkar SL, Gorantla A, Kimurto PK, Janila P (2013) Achievements and prospects of genomics-assisted breeding in three legume crops of the semi-arid tropics. Biotechnol Adv.  https://doi.org/10.1016/j.biotechadv.2013.1001.1001
  31. Varshney RK, Pandey MK, Pasupuleti J, Nigam SN, Sudini H, Gowda MVC, Sriswathi M, Radhakrishan T, Manohar SS, Patne N (2014) Marker-assisted introgression of a QTL region to improve rust resistance in three elite and popular varieties of peanut (Arachis hypogaea L.) Theor Appl Genet 127(8):1771–1781.  https://doi.org/10.1007/s00122-014-2338-3 CrossRefPubMedPubMedCentralGoogle Scholar
  32. Vishwakarma MK, Nayak L SN, Guo B, Wan L, Liao B, Varshney RK, Pandey MK (2017) Classical and molecular approaches for mapping of genes and quantitative trait loci in peanut (Arachis hypogaea L.). In: Varshney RK, Pandey MK, Puppala N (eds) The peanut genome. pp 93-116.  https://doi.org/10.1007/978-3-319-63935-2
  33. Wang S, Basten C, Zeng Z (2007) Windows QTL cartographer 2.5. North Carolina State University, RaleighGoogle Scholar
  34. Wang ML, Khera P, Pandey MK, Wang H, Qiao L, Feng S, Tonnis B, Barkley NA, Pinnow D, Holbrook CC (2015) Genetic mapping of QTLs controlling fatty acids provided insights into the genetic control of fatty acid synthesis pathway in peanut (Arachis hypogaea L.) PLoS One 10(4):e0119454.  https://doi.org/10.1371/journal.pone.0119454 CrossRefPubMedPubMedCentralGoogle Scholar
  35. Yang J, Hu C, Hu H, Yu R, Xia Z, Ye X, Zhu J (2008) QTLNetwork: mapping and visualizing genetic architecture of complex traits in experimental populations. Bioinformatics 24(5):721–723.  https://doi.org/10.1093/bioinformatics/btm494 CrossRefPubMedGoogle Scholar
  36. Yeri SB, Bhat RS (2016) Development of late leaf spot and rust resistant backcross lines in JL 24 variety of groundnut (Arachis hypogaea L.) Electron J Plant Breed 7(1):37–41.  https://doi.org/10.5958/0975-928X.2016.00005.3 CrossRefGoogle Scholar
  37. Yeri SB, Shirasawa K, Pandey MK, Gowda MVC, Sujay V, Shriswathi M, Nadaf HL, Motagi BN, Lingaraju S, Bhat ARS, Varshney RK, Krishnaraj PU, Bhat RS (2014) Development of NILs from heterogeneous inbred families for validating the rust resistance QTLs in peanut (Arachis hypogaea L.) Plant Breed 133(1):80–85.  https://doi.org/10.1111/pbr.12130 CrossRefGoogle Scholar
  38. Yin D, Wang Y, Zhang X, Ma X, He X, Zhang J (2017) Development of chloroplast genome resources for peanut (Arachis hypogaea L.) and other species of Arachis. Sci Rep 7(1):11649.  https://doi.org/10.1038/s41598-017-12026-x CrossRefPubMedPubMedCentralGoogle Scholar
  39. Yu SB, Li JX, Xu CG, Tan YF, Gao YJ, Li XH, Zhang Q, Maroof MAS (1997) Importance of epistasis as the genetic basis of heterosis in an elite rice hybrid. Proc Natl Acad Sci 94(17):9226–9231.  https://doi.org/10.1073/pnas.94.17.9226 CrossRefPubMedPubMedCentralGoogle Scholar
  40. Zeng ZB (1994) Precision mapping of quantitative trait loci. Genetics 136(4):1457–1468PubMedPubMedCentralGoogle Scholar
  41. Zhang X, Zhang J, He X, Wang Y, Ma X, Yin D (2017) Genome-wide association study of major agronomic traits related to domestication in peanut. Front Plant Sci 8:1611.  https://doi.org/10.3389/fpls.2017.01611 CrossRefPubMedPubMedCentralGoogle Scholar
  42. Zhao C, Qiu J, Agarwal G, Wang J, Ren X, Xia H, Guo B, Ma C, Wan S, Bertioli DJ (2017) Genome-wide discovery of microsatellite markers from diploid progenitor species, Arachis duranensis and A. ipaensis, and their application in cultivated peanut (A. hypogaea). Front Plant Sci 8.  https://doi.org/10.3389/fpls.2017.01209
  43. Zhu H, Liu Z, Fu X, Dai Z, Wang S, Zhang G, Zeng R, Liu G (2015) Detection and characterization of epistasis between QTLs on plant height in rice using single segment substitution lines. Breed Sci 65(3):192–200.  https://doi.org/10.1270/jsbbs.65.192 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2017

Authors and Affiliations

  • Yogendra Khedikar
    • 1
    • 2
  • Manish K. Pandey
    • 2
  • V. Sujay
    • 1
    • 2
  • Sube Singh
    • 2
  • Spurthi N. Nayak
    • 2
    • 3
  • Henry W. Klein-Gebbinck
    • 4
  • Cholin Sarvamangala
    • 1
    • 2
  • Ganapati Mukri
    • 1
  • Vanika Garg
    • 2
  • Hari D. Upadhyaya
    • 2
  • H. L. Nadaf
    • 3
  • M. V. C. Gowda
    • 1
  • Rajeev K. Varshney
    • 2
  • Ramesh S. Bhat
    • 3
  1. 1.Department of Genetics and Plant BreedingUniversity of Agricultural SciencesDharwadIndia
  2. 2.International Crops Research Institute for the Semi-Arid Tropics (ICRISAT)HyderabadIndia
  3. 3.Department of BiotechnologyUniversity of Agricultural SciencesDharwadIndia
  4. 4.Agriculture and Agri-Food CanadaBeaverlodgeCanada

Personalised recommendations