Molecular Breeding

, 37:37 | Cite as

Construction of two genetic linkage maps of taro using single nucleotide polymorphism and microsatellite markers

  • Laurent Soulard
  • Pierre Mournet
  • Baptiste Guitton
  • Hâna Chaïr


Linkage maps are needed for genetic studies and molecular breeding of taro (Colocasia esculenta). In this study, we used genotyping-by-sequencing (GBS) to identify single nucleotide polymorphism (SNP) loci on two mapping populations: F31 (HLB11 × VU006) composed of 266 progenies and F32 [HLB01 × (VU370×ID316)] composed of 292 progenies. SNP calling generated an initial set of 22,734 SNPs for F31 and 16,744 for F32. A large proportion of individuals and loci were later removed by filtering on the proportion of missing data and segregation distortions. Linkage maps were constructed with filtered SNPs in association with 14 simple sequence repeat (SSR) markers, using the maximum likelihood method. In both populations, loci were successfully grouped into 14 linkage groups (LGs) with an independence logarithm of odds (LOD) threshold of 11.0 and 8.0 for F31 and F32, respectively. LGs ranged in size from 90 to 15 markers for F31 and from 92 to 12 markers for F32. Bridge markers (459 SNPs and 9 SSRs) were identified and revealed homologous groups between families. Although our maps presented unprecedented chromosome coverage, the colinearity between homologous groups was low (except for LG07), and map lengths were globally inflated. Putative effects of missing data, segregation distortion, and genotyping errors on map accuracy are discussed. This research work led to the identification of a reliable set of SNPs potentially useful as a tool for a wide range of genetic studies in taro.


Genotyping-by-sequencing Linkage mapping Single nucleotide polymorphism Taro UNEAK 

Supplementary material

11032_2017_646_MOESM1_ESM.docx (13 kb)
Supplementary Table 1Summary of sequencing data. For each mapping family, we give the total, average, minimum and maximum number of good barcoded reads, mapped reads and 3× tags. (DOCX 12 kb)
11032_2017_646_MOESM2_ESM.docx (302 kb)
Supplementary Figure 1Digestion patterns of taro genomic DNA with ApeK1, Pst1 and EcoT221. Fragment size distribution of GBS libraries made with a single DNA sample using three restriction enzymes (top: ApeKI; middle: EcoT22I; bottom: PstI). Libraries were run on an Agilent BioAnalyzer 2100. The x-axis represents elution time and the y-axis shows fluorescence units. Numbers below hatch marks on the x-axis indicate fragment size (bp). Tall peaks at 15 and 1500 bp are size standards, and the small peak at ∼70 bp in all panels represents PCR primer dimers. Adapter dimers (∼128 bp) were not observed. (DOCX 302 kb)
11032_2017_646_MOESM3_ESM.docx (555 kb)
Supplementary Figure 2Neighbor-joining trees constructed with DARwin v5.0.158. Samples and sites were excluded from the analysis due to the extremely high level of missing data. For mapping populations, samples with more than 60% of missing data and individuals with more than 30% of missing data were excluded. As a result, neighbor-joining phylogenetic trees were based on 228 samples and 761 sites for F31 (a), 276 samples and 338 sites for F32 (b). In F31, the replicated samples are colored in green for parent HLB11 and colored in red for parent VU006. In F32, the replicated samples are colored in green for parent VU370 × ID316 and colored in red for parent HLB01. We can notice the same two-group structure for both families. This structure is related to the rate of missing data: one group of samples with low rates of missing data (low %NA) and one group of samples with higher levels (high %NA). (DOCX 554 kb)
11032_2017_646_MOESM4_ESM.docx (334 kb)
Supplementary Figure 3Colinearity of markers between linkage maps of F31 (left) and F32 (right) with a default order. Red lines between linkage groups show homology. Markers with a black label are not shared. SSR markers are shown in black boxes. (DOCX 333 kb)
11032_2017_646_MOESM5_ESM.docx (419 kb)
Supplementary Figure 4Colinearity of markers between linkage maps of F31 (left) and F32 (right) with a fixed order. Red lines between linkage groups show homology. Markers with a black label are not shared. SSR markers are shown in black boxes. (DOCX 418 kb)
11032_2017_646_MOESM6_ESM.docx (202 kb)
Supplementary Figure 5aSNP/SSR linkage map of F31 with a fixed order (DOCX 201 kb)
11032_2017_646_MOESM7_ESM.docx (196 kb)
Supplementary Figure 5bSNP/SSR linkage map of F32 with a fixed order. Specific SNP markers are labeled MXXXX, bridge SNPs are labeled IDKXXXX while SSR markers are shown in black boxes. Asterisks indicate distortion level of markers (*P < 0.05; **P < 0.01; ***P < 0.005; ****P < 0.001, *****P < 0.0005, ******P < 0.0001; *******P < 0.00005). Cumulative distances are indicated to the left of groups in centiMorgan (cM). (DOCX 196 kb)
11032_2017_646_MOESM8_ESM.fasta (99 kb)
Supplementary fasta 1Sequences of all SNPs from linkage map F31 (FASTA 99 kb)
11032_2017_646_MOESM9_ESM.fasta (93 kb)
Supplementary fasta 2Sequences of all SNPs from linkage map F32 (FASTA 92 kb)


  1. Alheit KV, Reif JC, Maurer HP et al (2011) Detection of segregation distortion loci in triticale (X Triticosecale Wittmack) based on a high-density DArT marker consensus genetic linkage map. BMC Genomics 12:380. doi:10.1186/1471-2164-12-380 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Allegre M, Argout X, Boccara M et al (2012) Discovery and mapping of a new expressed sequence tag-single nucleotide polymorphism and simple sequence repeat panel for large-scale genetic studies and breeding of Theobroma cacao L. DNA Res 19:23–35. doi:10.1093/dnares/dsr039 CrossRefPubMedGoogle Scholar
  3. Barba P, Cadle-Davidson L, Harriman J et al (2014) Grapevine powdery mildew resistance and susceptibility loci identified on a high-resolution SNP map. Theor Appl Genet 127:73–84. doi:10.1007/s00122-013-2202-x CrossRefPubMedGoogle Scholar
  4. Bennett MD, Smith JB (1995) Nuclear DNA amounts in angiosperms. Philos Trans R Soc Lond Ser B Biol Sci 274:227–274. doi:10.1098/rstb.1991.0120 CrossRefGoogle Scholar
  5. Bown D (2000) Aroids. Plants of the arum family. Timber Press, PortlandGoogle Scholar
  6. Brummer EC, Bouton JH, Kochert G (1993) Development of an RFLP map in diploid alfalfa. Theor Appl Genet 86:329–332. doi:10.1007/BF00222097 PubMedGoogle Scholar
  7. Bushakra JM, Bryant DW, Dossett M et al (2015) A genetic linkage map of black raspberry (Rubus occidentalis) and the mapping of Ag4 conferring resistance to the aphid Amphorophora agathonica. Theor Appl Genet 128:1631–1646. doi:10.1007/s00122-015-2541-x CrossRefPubMedPubMedCentralGoogle Scholar
  8. Danecek P, Auton A, Abecasis G et al (2011) The variant call format and VCFtools. Bioinformatics 27:2156–2158. doi:10.1093/bioinformatics/btr330 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Droc G, Ruiz M, Larmande P et al (2006) OryGenesDB: a database for rice reverse genetics. Nucleic Acids Res 34:D736–D740. doi:10.1093/nar/gkj012 CrossRefPubMedGoogle Scholar
  10. Elshire RJ, Glaubitz JC, Sun Q et al (2011) A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS One 6:e19379. doi:10.1371/journal.pone.0019379 CrossRefPubMedPubMedCentralGoogle Scholar
  11. FAO (2015) FAOSTAT. Food and Agriculture Organization of the United Nations. Available at:
  12. Felderhoff T, McIntyre L, Saballos A, Vermerris W (2016) Using genotyping by sequencing to map two novel anthracnose resistance loci in Sorghum bicolor. G3 (Bethesda) 6:1935–1946. doi:10.1534/g3.116.030510 CrossRefGoogle Scholar
  13. Ganal MW, Altmann T, Röder MS (2009) SNP identification in crop plants. Curr Opin Plant Biol 12:211–217. doi:10.1016/j.pbi.2008.12.009 CrossRefPubMedGoogle Scholar
  14. Girma G, Hyma KE, Asiedu R et al (2014) Next-generation sequencing based genotyping, cytometry and phenotyping for understanding diversity and evolution of guinea yams. Theor Appl Genet 1783–1794. doi:10.1007/s00122-014-2339-2
  15. Glaubitz AJ, Harriman J, Casstevens T (2012) TASSEL 3.0 Genotyping by Sequencing (GBS) pipeline documentation. 1–20Google Scholar
  16. Hackett CA, Broadfoot LB (2003) Effects of genotyping errors, missing values and segregation distortion in molecular marker data on the construction of linkage maps. Heredity (Edinb) 90:33–38. doi:10.1038/sj.hdy.6800173 CrossRefGoogle Scholar
  17. Haldane JBS (1919) The combination of linkage values and the calculation of distances between the loci of linked factors. J Genet 8:299–309CrossRefGoogle Scholar
  18. Hippolyte I, Bakry F, Seguin M et al (2010) A saturated SSR/DArT linkage map of Musa acuminata addressing genome rearrangements among bananas. BMC Plant Biol 10:65. doi:10.1186/1471-2229-10-65 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Hu K, Huang XF, Ke WD, Ding Y (2009) Characterization of 11 new microsatellite loci in taro (Colocasia esculenta). Mol Ecol Resour 9:582–584. doi:10.1111/j.1755-0998.2008.02441.x CrossRefPubMedGoogle Scholar
  20. Huang YF, Poland JA, Wight CP et al (2014) Using genotyping-by-sequencing (GBS) for genomic discovery in cultivated oat. PLoS One 9(7):e102448. doi:10.1371/journal.pone.0102448 CrossRefPubMedPubMedCentralGoogle Scholar
  21. Irwin S, Kaufusi P, Banks K et al (1998) Molecular characterization of taro (Colocasia esculenta) using RAPD markers. Euphytica:183–189Google Scholar
  22. Jansen J, de Jong AG, Van Ooijen JW (2001) Constructing dense genetic linkage maps. Theor Appl Genet 102:1113–1122. doi:10.1007/s001220000489 CrossRefGoogle Scholar
  23. Kim C, Guo H, Kong W et al (2016) Application of genotyping by sequencing technology to a variety of crop breeding programs. Plant Sci 14–22. doi:10.1016/j.plantsci.2015.04.016
  24. Kokubugata G, Konishi T (1999) Implication of a basic chromosome number of x=14 in seven cultivars of two varieties of Colocasia esculenta by fluorescent in situ hybridization using rDNA probe. Cytologia (Tokyo) 64:77–83CrossRefGoogle Scholar
  25. Kreike CM, Van Eck HJ, Lebot V (2004) Genetic diversity of taro, Colocasia esculenta (L.) Schott, in Southeast Asia and the Pacific. Theor Appl Genet 109:761–768. doi:10.1007/s00122-004-1691-z CrossRefPubMedGoogle Scholar
  26. Lander ES, Botstein S (1989) Mapping mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121:185. doi:10.1038/hdy.2014.4 PubMedPubMedCentralGoogle Scholar
  27. Lebot V, Aradhya KM (1991) Isozyme variation in taro (Colocasia esculenta (L.) Schott) from Asia and Oceania. Euphytica 3578:55–66Google Scholar
  28. Li X, Wei Y, Acharya A et al (2014) A saturated genetic linkage map of autotetraploid alfalfa (Medicago sativa L.) developed using genotyping-by-sequencing is highly syntenous with the Medicago truncatula genome. G3 (Bethesda) 4:1971–1979. doi:10.1534/g3.114.012245 CrossRefGoogle Scholar
  29. Lorieux M (1994) Aspects statistiques de la cartographie des marqueurs moléculaires. CIRAD, MontpellierGoogle Scholar
  30. Lorieux M, Goffinet B, Perrier X et al (1995) Maximum-likelihood models for mapping genetic markers showing segregation distortion. 1. Backcross populations. Theor Appl Genet 90:73–80. doi:10.1007/BF00220998 CrossRefPubMedGoogle Scholar
  31. Lu H, Romero-Severson J, Bernardo R (2002) Chromosomal regions associated with segregation distortion in maize. Theor Appl Genet 105:622–628. doi:10.1007/s00122-002-0970-9 CrossRefPubMedGoogle Scholar
  32. Lu Z, Li W, Yang Y, Hu X (2011) Isolation and characterization of 19 new microsatellite loci in Colocasia esculenta (Araceae). Am J Bot 98:e239–e241. doi:10.3732/ajb.1100067 CrossRefPubMedGoogle Scholar
  33. Lu F, Lipka AE, Glaubitz J et al (2013) Switchgrass genomic diversity, ploidy, and evolution: novel insights from a network-based SNP discovery protocol. PLoS Genet 9:e1003215. doi:10.1371/journal.pgen.1003215 CrossRefPubMedPubMedCentralGoogle Scholar
  34. Luo L, Xu S (2003) Mapping viability loci using molecular markers. Heredity (Edinb) 90:459–467. doi:10.1038/sj.hdy.6800264 CrossRefGoogle Scholar
  35. Lynch M, Walsh B (1998) Genetics and analysis of quantitative traits. Sinauer associates Inc., SunderlandGoogle Scholar
  36. Mace ES, Godwin ID (2002) Development and characterization of polymorphic microsatellite markers in taro (Colocasia esculenta). Genome 45:823–832CrossRefPubMedGoogle Scholar
  37. Matsuda M, Nawata E (2002) Geographical distribution of ribosomal DNA variation in taro, Colocasia esculenta (L.) Schott, in eastern Asia. Euphytica 128:165–172. doi:10.1023/A:1020825418469 CrossRefGoogle Scholar
  38. Moumouni KH, Kountche BA, Jean M et al (2015) Construction of a genetic map for pearl millet, Pennisetum glaucum (L.) R. Br., using a genotyping-by-sequencing (GBS) approach. Mol Breed 35:5. doi:10.1007/s11032-015-0212-x CrossRefGoogle Scholar
  39. Noyer JL, Billot C, Weber A et al (2003) Genetic diversity of taro (Colocasia esculenta (L.) Schott) assessed by SSR markers. In: Guarino L, Taylor M, Osborn T (eds) Proceedings of the third International Taro Symposium. Secretariat of the Pacific Community (SPC), International Plant Genetic Resources Institute (IPGRI), 21–23 May 2003: Tanoa International Hotel, Nadi, Suva, Fiji Islands, p 174–180Google Scholar
  40. Paterson AH, Lander ES, Hewitt JD et al (1988) Resolution of quantitative traits into Mendelian factors by using a complete linkage map of restriction fragment length polymorphisms. Nature 335:721–726CrossRefPubMedGoogle Scholar
  41. Pegadaraju V, Nipper R, Hulke B et al (2013) De novo sequencing of sunflower genome for SNP discovery using RAD ( Restriction site Associated DNA ) approachGoogle Scholar
  42. Perrier X, Jacquemoud-Collet JP (2006) DARwin software. Available at:
  43. Poland JA, Brown PJ, Sorrells ME, Jannink JL (2012) Development of high-density genetic maps for barley and wheat using a novel two-enzyme genotyping-by-sequencing approach. PLoS One. doi:10.1371/journal.pone.0032253 Google Scholar
  44. Pootakham W, Jomchai N, Ruang-areerate P et al (2015) Genome-wide SNP discovery and identification of QTL associated with agronomic traits in oil palm using genotyping-by-sequencing (GBS). Genomics 105:288–295. doi:10.1016/j.ygeno.2015.02.002 CrossRefPubMedGoogle Scholar
  45. Quarrie SA, Steed A, Calestani C et al (2005) A high-density genetic map of hexaploid wheat (Triticum aestivum L.) from the cross Chinese Spring x SQ1 and its use to compare QTLs for grain yield across a range of environments. Theor Appl Genet 110:865–880. doi:10.1007/s00122-004-1902-7 CrossRefPubMedGoogle Scholar
  46. Quero-García J, Courtois B, Ivancic A et al (2006) First genetic maps and QTL studies of yield traits of taro (Colocasia esculenta (L.) Schott). Euphytica 151:187–199. doi:10.1007/s10681-006-9139-y CrossRefGoogle Scholar
  47. Rabbi IY, Kulembeka HP, Masumba E et al (2012) An EST-derived SNP and SSR genetic linkage map of cassava (Manihot esculenta Crantz). Theor Appl Genet 125:329–342. doi:10.1007/s00122-012-1836-4 CrossRefPubMedGoogle Scholar
  48. Rafalski A (2002) Applications of single nucleotide polymorphism in crop genetics. Curr Opin Plant Biol 5:94–100CrossRefPubMedGoogle Scholar
  49. Russell J, Hackett C, Hedley P et al (2014) The use of genotyping by sequencing in blackcurrant (Ribes nigrum): developing high-resolution linkage maps in species without reference genome sequences. Mol Breed 33:835–849. doi:10.1007/s11032-013-9996-8 CrossRefGoogle Scholar
  50. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425PubMedGoogle Scholar
  51. Sandler L, Hiraizumi Y, Sandler I (1959) Meiotic drive in natural populations of Drosophila melanogaster. I. The cytogenetic basis of segregation-distortion. Genetics 44:233–250PubMedPubMedCentralGoogle Scholar
  52. Sonah H, Bastien M, Iquira E et al (2013) An improved genotyping by sequencing (GBS) approach offering increased versatility and efficiency of SNP discovery and genotyping. PLoS One 8:1–9. doi:10.1371/journal.pone.0054603 CrossRefGoogle Scholar
  53. Soulard L, Letourmy P, Cao T-V et al (2016) Evaluation of vegetative growth, yield and quality related traits in taro (Colocasia esculenta [L.] Schott). Crop Sci 56:976–989. doi:10.2135/cropsci2015.05.0306 CrossRefGoogle Scholar
  54. Spindel J, Wright M, Chen C et al (2013) Bridging the genotyping gap: using genotyping by sequencing (GBS) to add high-density SNP markers and new value to traditional bi-parental mapping and breeding populations. Theor Appl Genet 126:2699–2716. doi:10.1007/s00122-013-2166-x CrossRefPubMedGoogle Scholar
  55. Sreekumari MT (1997) Cytological studies in taro—a review. J Root Crop 23:1–7Google Scholar
  56. Tai TH, Tanksley SD (1990) A rapid and inexpensive method for isolation of total DNA from dehydrated plant tissue. Plant Mol Biol Report 8:297–303. doi:10.1007/BF02668766 CrossRefGoogle Scholar
  57. Truong HT, Ramos AM, Yalcin F et al (2012) Sequence-based genotyping for marker discovery and co-dominant scoring in germplasm and populations. PLoS One. doi:10.1371/journal.pone.0037565 Google Scholar
  58. Uitdewilligen JGAML, Wolters AMA, D’hoop BB et al (2013) A next-generation sequencing method for genotyping-by-sequencing of highly heterozygous autotetraploid potato. PLoS One 8:10–14. doi:10.1371/journal.pone.0062355 CrossRefGoogle Scholar
  59. Van Ooijen JW (2006) JoinMap 4, software for the calculation of genetic linkage maps in experimental populations. Kyazma B.V, WageningenGoogle Scholar
  60. Vandenbroucke H, Mournet P, Vignes H et al (2016) Somaclonal variants of taro (Colocasia esculenta Schott) and yam (Dioscorea alata L.) are incorporated into farmers’ varietal portfolios in Vanuatu. Genet Resour Crop Evol 63:495–511. doi:10.1007/s10722-015-0267-x CrossRefGoogle Scholar
  61. Ward JA, Bhangoo J, Fernández-Fernández F et al (2013) Saturated linkage map construction in Rubus idaeus using genotyping by sequencing and genome-independent imputation. BMC Genomics 14:2. doi:10.1186/1471-2164-14-2 CrossRefPubMedPubMedCentralGoogle Scholar
  62. Wong MML, Gujaria-Verma N, Ramsay L et al (2015) Classification and characterization of species within the genus Lens using genotyping-by-sequencing (GBS). PLoS One 10:e0122025. doi:10.1371/journal.pone.0122025 CrossRefPubMedPubMedCentralGoogle Scholar
  63. Woodhead M, Russell J, Squirrell J et al (2005) Comparative analysis of population genetic structure in Athyrium distentifolium (Pteridophyta) using AFLPs and SSRs from anonymous and transcribed gene regions. Mol Ecol 14:1681–1695. doi:10.1111/j.1365-294X.2005.02543.x CrossRefPubMedGoogle Scholar
  64. Xu S, Hu Z (2009) Mapping quantitative trait loci using distorted markers. Int J Plant Genomics. doi:10.1155/2009/410825 Google Scholar
  65. Xu Y, Zhu L, Xiao J et al (1997) Chromosomal regions associated with segregation distortion of molecular markers in F2, backcross, doubled haploid, and recombinant inbred populations in rice (Oryza sativa L.) Mol Gen Genet 253:535–545. doi:10.1007/s004380050355 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  • Laurent Soulard
    • 1
  • Pierre Mournet
    • 1
  • Baptiste Guitton
    • 1
  • Hâna Chaïr
    • 1
  1. 1.CIRAD, UMR AGAPMontpellier Cedex 5France

Personalised recommendations