Molecular Breeding

, 37:57 | Cite as

Enhancement of abiotic stress tolerance in poplar by overexpression of key Arabidopsis stress response genes, AtSRK2C and AtGolS2

  • Xiang Yu
  • Misato Ohtani
  • Miyako Kusano
  • Nobuyuki Nishikubo
  • Misa Uenoyama
  • Taishi Umezawa
  • Kazuki Saito
  • Kazuo Shinozaki
  • Taku Demura


Recent environmental issues have increased the demand for woody biomass as a renewable resource for industry and energy. For a stable supply of woody biomass, it is critical to decrease the effects of abiotic stresses, such as drought and salinity, which hinder plant growth. For the goal to develop practical stress-tolerant trees, we generated transgenic poplar plants (P. tremula × tremuloides), in which a key Arabidopsis regulatory factor involved in stress responses, SNF1-related protein kinase 2C (AtSRK2C), or galactinol synthase 2 (AtGolS2), was overexpressed. Both types of transgenic poplar plants displayed higher tolerance to abiotic stresses, in comparison with nontransgenic plants, indicating that AtSRK2C and AtGolS2 can function in the abiotic stress response pathway of poplar. We also examined the expression profiles of ten poplar genes putatively homologous to well-known Arabidopsis stress response genes and found that several of the poplar genes showed different responses to abiotic stress from their Arabidopsis counterparts. Whereas the overexpression of AtSRK2C in transgenic Arabidopsis plants was reported to upregulate the expression of endogenous genes, the overexpression of AtSRK2C or AtGolS2 in transgenic poplar did not. Taken together, our findings suggest that the details of the underlying molecular mechanisms of the abiotic stress response may differ, but that the key regulatory factors in Arabidopsis and poplar have common features and are effective molecular targets for further breeding to enhance abiotic stress tolerance in poplar.


Abiotic stress tolerance Transgenic poplar AtSRK2C AtGolS2 Raffinose family oligosaccharide 



Abscisic acid


Dehydration-responsive element binding


Gas chromatography-mass spectrophotometry


Galactinol synthase 2


Late embryogenesis abundant


Raffinose family oligosaccharide


Reverse transcription polymerase chain reaction


SNF1-related protein kinase 2C



We thank Ms. Ayumi Ihara, Ms. Arika Takebayashi, and Mr. Makoto Kobayashi (RIKEN) for their excellent technical assistance and Ms. Akiko Sato and Ms. Kayo Kitaura (RIKEN) for propagating the poplar trees. This work was supported in part by the RIKEN Biomass Engineering Program and RIKEN Center for Sustainable Resource Science.

Supplementary material

11032_2016_618_MOESM1_ESM.pdf (345 kb)
ESM 1 (PDF 345 kb)


  1. Allen JA, Chambers JL, Stine M (1994) Prospects for increasing the salt tolerance of forest trees: a review. Tree Physiol 14:843–853CrossRefPubMedGoogle Scholar
  2. Black M, Corbineau F, Gee H, Côme D (1999) Water content, raffinose, and dehydrins in the induction of desiccation tolerance in immature wheat embryos. Plant Physiol 120:463–472CrossRefPubMedPubMedCentralGoogle Scholar
  3. Bouchabke O, Chang F, Simon M, Voisin R, Pelletier G, Durand-Tardif M (2008) Natural variation in Arabidopsis thaliana as a tool for highlighting differential drought responses. PLoS One 3:e1705CrossRefPubMedPubMedCentralGoogle Scholar
  4. Boudsocq M, Barbier-Brygoo H, Laurière C (2004) Identification of nine sucrose nonfermenting 1-related protein kinases 2 activated by hyperosmotic and saline stresses in Arabidopsis thaliana. J Biol Chem 279:41756–41766Google Scholar
  5. Brosché M, Vinocur B, Alatalo ER, Lamminmäki A, Teichmann T, Ottow EA, Djilianov D, Afif D, Bogeat-Triboulot MB, Altman A, Polle A, Dreyer E, Rudd S, Paulin L, Auvinen P, Kangasjärvi J (2005) Gene expression and metabolite profiling of Populus euphratica growing in the Negev desert. Genome Biol 6:R101CrossRefPubMedPubMedCentralGoogle Scholar
  6. Chae K, Gonong BJ, Kim SC, Kieslich CA, Morikis D, Balasubramanian S, Lord EM (2010) A multifaceted study of stigma/style cysteine-rich adhesin (SCA)-like Arabidopsis lipid transfer proteins (LTPs) suggests diversified roles for these LTPs in plant growth and reproduction. J Exp Bot 61:4277–4290CrossRefPubMedPubMedCentralGoogle Scholar
  7. Chen J, Xia X, Yin W (2009) Expression profiling and functional characterization of a DREB2-type gene from Populus euphratica. Biochem Biophys Res Commun 378:483–487CrossRefPubMedGoogle Scholar
  8. Chen S, Polle A (2010) Salinity tolerance of Populus. Plant Biol 12:317–333CrossRefPubMedGoogle Scholar
  9. Choi H, Hong J, Ha J, Kang J, Kim SY (2000) ABFs, a family of ABA-responsive element binding factors. J Biol Chem 275:1723–1730CrossRefPubMedGoogle Scholar
  10. Cox SE, Stushnoff C (2001) Temperature-related shifts in soluble carbohydrate content during dormancy and cold acclimation in Populus tremuloides. Can J Fores Res 31:730–737CrossRefGoogle Scholar
  11. Cutler SR, Rodriguez PL, Finkelstein RR, Abrams SR (2010) Abscisic acid: emergence of a core signaling network. Annu Rev Plant Biol 61:651–679CrossRefPubMedGoogle Scholar
  12. Ding M, Hou P, Shen X, Wang M, Deng S, Sun J, Xiao F, Wang R, Zhou X, Lu C, Zhang D, Zheng X, Hu X, Chen S (2010) Salt-induced expression of genes related to Na(+)/K(+) and ROS homeostasis in leaves of salt-resistant and salt-sensitive poplar species. Plant Mol Biol 73:251–269CrossRefPubMedGoogle Scholar
  13. dos Santos TB, Budzinski IG, Marur CJ, Petkowicz CL, Pereira LF, Vieira LG (2011) Expression of three galactinol synthase isoforms in Coffea arabica L. and accumulation of raffinose and stachyose in response to abiotic stresses. Plant Physiol Biochem 49:441–448CrossRefPubMedGoogle Scholar
  14. Eriksson ME, Israelsson M, Olsson O, Moritz T (2000) Increased gibberellin biosynthesis in transgenic trees promotes growth, biomass production and xylem fiber length. Nat Biotechnol 18:784–788CrossRefPubMedGoogle Scholar
  15. Fujita Y, Fujita M, Satoh R, Maruyama K, Parvez MM, Seki M, Hiratsu K, Ohme-Takagi M, Shinozaki K, Yanaguchi-Shinozaki K (2005) AREB1 is a transcription activator of novel ABRE-dependent ABA signaling that enhances drought stress tolerance in Arabidopsis. Plant Cell 17:3470–3488CrossRefPubMedPubMedCentralGoogle Scholar
  16. Hu L, Lu H, Liu QL, Chen XM, Jiang XN (2005) Overexpression of mtlD gene in transgenic Populus tomentosa improves salt tolerance through accumulation of mannitol. Tree Physiol 25:1273–1281CrossRefPubMedGoogle Scholar
  17. Jansson S, Douglas CJ (2007) Populus: a model system for plant biology. Annu Rev Plant Biol 58:435–458CrossRefPubMedGoogle Scholar
  18. Janz D, Behnke K, Schnitzler JP, Kanawati B, Schmitt-Kopplin P, Polle A (2010) Pathway analysis of the transcriptome and metabolome of salt sensitive and tolerant poplar species reveals evolutionary adaption of stress tolerance mechanisms. BMC Plant Biol 10:150–167CrossRefPubMedPubMedCentralGoogle Scholar
  19. Kempa S, Krasensky J, Santo SD, Kopka J, Jonak C (2008) A central role of abscisic acid in stress- regulates carbohydrate metabolism. PLoS One 3:e3935CrossRefPubMedPubMedCentralGoogle Scholar
  20. Kikuchi A, Kawaoka A, Shimazaki T, Yu X, Ebinuma H, Watanabe KN (2006) Trait stability and environmental biosafety assessments on three transgenic Eucalyptus lines (Eucalyptus camaldulensis Dehnh. codA 12–5B, codA 12–5C, codA 20-C) conferring salt tolerance. Breeding Res 8:17–26 (in Japanese)Google Scholar
  21. Kubo M, Udagawa M, Nishikubo N, Horiguchi G, Yamaguchi M, Ito J, Mimura T, Fukuda H, Demura T (2005) Transcription switches for protoxylem and metaxylem vessel formation. Genes Dev 19:1855–1860CrossRefPubMedPubMedCentralGoogle Scholar
  22. Kusano M, Fukushima A, Arita M, Jonsson P, Moritz T, Kobayashi M, Hayashi N, Tohge T, Saito K (2007) Unbiased characterization of genotype-dependent metabolic regulations by metabolomic approach in Arabidopsis thaliana. BMC Syst Biol 1:53CrossRefPubMedPubMedCentralGoogle Scholar
  23. Liu Q, Kasuga M, Sakuma Y, Abe H, Miura S, Yamaguchi-Shinozaki K, Shinozaki K (1998) Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low-temperature-responsive gene expression, respectively, in Arabidopsis. Plant Cell 10:1391–1406CrossRefPubMedPubMedCentralGoogle Scholar
  24. Lopez-Molina L, Mongrand S, Chua NH (2001) A postgermination developmental arrest checkpoint is mediated by abscisic acid and requires the ABI5 transcription factor in Arabidopsis. Proc Natl Acad Sci U S A 98:4782–4787CrossRefPubMedPubMedCentralGoogle Scholar
  25. Ma HS, Liang D, Shuai P, Xia XL, Yin WL (2010) The salt- and drought-inducible poplar GRAS protein SCL7 confers salt and drought tolerance in Arabidopsis thaliana. J Exp Bot 61:4011–4019CrossRefPubMedPubMedCentralGoogle Scholar
  26. Ma S, Bohnert HJ (2007) Integration of Arabidopsis thaliana stress-related transcript profiles, promoter structures, and cell-specific expression. Genome Biol 8:R49CrossRefPubMedPubMedCentralGoogle Scholar
  27. Mizoguchi M, Umezawa T, Nakashima K, Kidokoro S, Takasaki H, Fujita Y, Yamaguchi-Shinozaki K, Shinozaki K (2010) Two closely related subclass II SnRK2 protein kinases cooperatively regulate drought-inducible gene expression. Plant Cell Physiol 51:842–847CrossRefPubMedGoogle Scholar
  28. Nambara E, Marion-Poll A (2005) Abscisic acid biosynthesis and catabolism. Annu Rev Plant Biol 56:165–185CrossRefPubMedGoogle Scholar
  29. Nilsson O, Aldén T, Sitbon F, Little CHA, Chalupa V, Sandberg G, Olsson O (1992) Spatial pattern of cauliflower mosaic virus 35S promoterluciferase expression in transgenic hybrid aspen trees monitored by enzymatic assay and non-destructive imaging. Transgenic Res 1:209–220CrossRefGoogle Scholar
  30. Nishizawa A, Yabuta Y, Shigeoka S (2008) Galactinol and raffinose constitute a novel function to protect plants from oxidative damage. Plant Physiol 147:1251–1263CrossRefPubMedPubMedCentralGoogle Scholar
  31. Ohtani M, Nishikubo N, Xu B, Yamaguchi M, Mitsuda N, Goué N, Shi F, Ohme-Takagi M, Demura T (2011) A NAC domain protein family contributing to the regulation of wood formation in poplar. Plant J 67:499–512CrossRefPubMedGoogle Scholar
  32. Oliver MJ, Guo LN, Alexander DC, Ryals JA, Wone BWM, Cushman JC (2011) A sister group contrast using untargeted global metabolomic analysis delineates the biochemical regulation underlying desiccation tolerance in Sporobolus stapfianus. Plant Cell 23:1231–1248CrossRefPubMedPubMedCentralGoogle Scholar
  33. Olvera-Carrillo Y, Campos F, Reyes JL, Garciarrubio A, Covarrubias AA (2010) Functional analysis of the group 4 late embryogenesis abundant proteins reveals their relevance in the adaptive response during water deficit in Arabidopsis. Plant Physiol 154:373–390CrossRefPubMedPubMedCentralGoogle Scholar
  34. Osakabe Y, Kawaoka A, Nishikubo N, Osakabe K (2012) Responses to environmental stresses in woody plants: key to survive and longevity. J Plant Res 125:1–10CrossRefPubMedGoogle Scholar
  35. Panikulangara TJ, Eggers-Schumacher G, Wunderlich M, Stransky H, Schoffl F (2004) Galactinol synthase1. A novel heat shock factor target gene responsible for heat-induced synthesis of raffinose family oligosaccharides in Arabidopsis. Plant Physiol 136:3148–3158CrossRefPubMedPubMedCentralGoogle Scholar
  36. Pattanagul W, Madore MA (1999) Water deficit effects on raffinose family oligosaccharide metabolism in coleus. Plant Physiol 121:987–993CrossRefPubMedPubMedCentralGoogle Scholar
  37. Perry CH, Millerb CR, Brooks KN (2001) Impacts of short-rotation hybrid poplar plantationson regional water yield. Forest Ecol Manag 143:143–151CrossRefGoogle Scholar
  38. Polle A, Douglas C (2010) The molecular physiology of poplars: paving the way for knowledge-based biomass production. Plant Biol 12:239–241CrossRefPubMedGoogle Scholar
  39. Ruttink T, Arend M, Morreel K, Storme V, Rombauts S, Fromm J, Bhalerao RB, Boerjan W, Rohde A (2007) A molecular timetable for apical bud formation and dormancy induction in poplar. Plant Cell 19:2370–2390CrossRefPubMedPubMedCentralGoogle Scholar
  40. Shinozaki K, Yamaguchi-Shinozaki K, Seki M (2003) Regulatory network of gene expression in the drought and cold stress responses. Curr Opin Plant Biol 6:410–417CrossRefPubMedGoogle Scholar
  41. Shinozaki K, Yamaguchi-Shinozaki K (2007) Gene networks involved in drought stress response and tolerance. J Exp Bot 58:221–227CrossRefPubMedGoogle Scholar
  42. Su X, Chu Y, Li H, Hou Y, Zhang B, Huang Q, Hu Z, Huang R, Tian Y (2011) Expression of multiple resistance genes enhances tolerance to environmental stressors in transgenic poplar (Populus × euramericana ‘Guariento’). PLoS One 6:e24614CrossRefPubMedPubMedCentralGoogle Scholar
  43. Taji T, Ohsumi C, Iuchi S, Seki M, Kasuga M, Kobayashi M, Yamaguchi-Shinozaki K, Shinozaki K (2002) Important roles of drought- and cold-inducible genes for galactinol synthase in stress tolerance in Arabidopsis thaliana. Plant J 29:417–426CrossRefPubMedGoogle Scholar
  44. Tapernoux-Lüthi EM, Böhm A, Keller F (2004) Cloning, functional expression, and characterization of the raffinose oligosaccharide chain elongation enzyme, galactan:galactan galactosyltransferase, from common bugle leaves. Plant Physiol 134:1377–1387CrossRefPubMedPubMedCentralGoogle Scholar
  45. Thomashow MF (1999) Plant cold acclimation: freezing tolerance genes and regulatory mechanisms. Annu. Rev. Plant Physiol Plant Mol Biol 50:571–599CrossRefGoogle Scholar
  46. Tuskan GA, Difazio S, Jansson S, Bohlmann J, Grigoriev I, Hellsten U et al (2006) The genome of black cottonwood, Populus trichocarpa (Torr. & gray). Science 313:1596–1604CrossRefPubMedGoogle Scholar
  47. Umezawa T, Yoshida R, Maruyama K, Yamaguchi-Shinozaki K, Shinozaki K (2004) SRK2C, a SNF1-related protein kinase 2, improves drought tolerance by controlling stress-responsive gene expression in Arabidopsis thaliana. Proc Natl Acad Sci U S A 101:17306–17311CrossRefPubMedPubMedCentralGoogle Scholar
  48. Umezawa T, Sugiyama N, Takahashi F, Anderson JC, Ishihama Y, Peck SC, Shinozaki K (2013) Genetics and phosphoproteomics reveal a protein phosphorylation network in the abscisic acid signaling pathway in Arabidopsis thaliana. Sci Signal 6:rs8CrossRefPubMedGoogle Scholar
  49. Xiong L, Schumaker KS, Zhu JK (2002) Cell signaling during cold, drought, and salt stress. Plant Cell 14:5165–5183Google Scholar
  50. Yu X, Kikuchi A, Matsunaga E, Morishita Y, Nanto K, Sakurai N, Suzuki H, Shibata D, Shimada T, Watanabe KN (2013a) The choline oxidase gene codA confers salt tolerance to transgenic Eucalyptus globulus in a semi-confined condition. Mol Biotechnol 54:320–330CrossRefPubMedGoogle Scholar
  51. Yu X, Kikuchi A, Shimazaki T, Yamada A, Ozeki Y, Matsunaga E, Ebinuma H, Watanabe KN (2013b) Assessment of the salt tolerance and environmental biosafety of Eucalyptus camaldulensis harboring a mangrin transgene. J Plant Res 126:141–150Google Scholar
  52. Zhao P, Liu F, Ma M, Gong J, Wang Q, Jia P, Zheng G, Liu H (2011) Overexpression of AtLEA3-3 confers resistance to cold stress in Escherichia coli and provides enhanced osmotic stress tolerance and ABA sensitivity in Arabidopsis thaliana. Mol Biol (Mosk) 45:851–862Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  • Xiang Yu
    • 1
  • Misato Ohtani
    • 1
    • 2
  • Miyako Kusano
    • 1
  • Nobuyuki Nishikubo
    • 3
    • 4
  • Misa Uenoyama
    • 2
  • Taishi Umezawa
    • 3
    • 5
  • Kazuki Saito
    • 1
  • Kazuo Shinozaki
    • 1
  • Taku Demura
    • 1
    • 2
  1. 1.RIKEN Center for Sustainable Resource ScienceYokohamaJapan
  2. 2.Graduate School of Biological SciencesNara Institute of Science and TechnologyNaraJapan
  3. 3.RIKEN Plant Science CenterYokohamaJapan
  4. 4.Forest Technology LaboratoriesOji Holdings CorporationTokyoJapan
  5. 5.Tokyo University of Agriculture and TechnologyTokyoJapan

Personalised recommendations