Molecular Breeding

, 36:166 | Cite as

Exploring the quantitative resistance to Pseudomonas syringae pv. phaseolicola in common bean (Phaseolus vulgaris L.)

  • Ana M. González
  • Fernando J. Yuste-Lisbona
  • Luis Godoy
  • Antonia Fernández-Lozano
  • A. Paula Rodiño
  • Antonio M. De Ron
  • Rafael Lozano
  • Marta Santalla


Pseudomonas syringae pv. phaseolicola is an important disease that causes halo blight in common bean. The genetic mechanisms underlying quantitative halo blight resistance are poorly understood in this species, as most disease studies have focused on qualitative resistance. The present work examines the genetic basis of quantitative resistance to the nine halo blight races in different organs (primary and trifoliate leaf, stem and pod) of an Andean recombinant inbred line (RIL) progeny. Using a multi-environment quantitative trait locus (QTL) mapping approach, 76 and 101 main-effect and epistatic QTLs were identified, respectively. Most of the epistatic interactions detected were due to loci without detectable QTL additive main effects. Main and epistatic QTLs detected were mainly consistent across the environment conditions. The homologous genomic regions corresponding to 26 of the 76 main-effect detected QTLs were positive for the presence of resistance-associated gene cluster encoding nucleotide-binding and leucine-rich repeat (NL) proteins and known defence genes. Main-effect QTLs for resistance to races 3, 4 and 5 in leaf, stem and pod were located on chromosome 2 within a 3.01-Mb region, where a cluster of nine NL genes was detected. The NL gene Phvul.002G323300 is located in this region, which can be considered an important putative candidate gene for the non-organ-specific QTL identified here. The present research provides essential information not only for the better understanding of the plant-pathogen interaction but also for the application of genomic assisted breeding for halo blight resistance in common bean.


Halo blight Phaseolus vulgarisQuantitative trait loci Epistasis Resistance gene clusters NL genes 



This work was financially supported by the Ministerio de Economía y Competitividad (AGL2011-25562, RF2012-C00026-C02-01 and RF2012-C00026-C02-02 projects), Junta de Andalucía (Grant P12-AGR-01482 funded by Programa de Excelencia) and UE-FEDER Program. The authors would also like to thank Campus de Excelencia Internacional Agroalimentario-CeiA3 for partially supporting this work, and the Secretaría de Educación Superior, Ciencia, Tecnología e Innovación (SENESCYT) from the Ecuadorian Government for a fellowship to L. Godoy. We are indebted to Dr. J. Murillo from Departamento de Producción Agraria de la Universidad Pública de Navarra, Spain, for kindly supplying bacterial strains and his advice in inoculation methods.

Supplementary material

11032_2016_589_MOESM1_ESM.pdf (8.7 mb)
ESM 1 (PDF 8943 kb)


  1. Acharya BR, Raina S, Maqbool SB, Jagadeeswaran G, Mosher SL, Appel HM, Schultz JC, Klessig DF, Raina R (2007) Overexpression of CRK13, an Arabidopsis cysteine-rich receptor-like kinase, results in enhanced resistance to Pseudomonas syringae. Plant J 50:488–499. doi: 10.1111/j.1365-313X.2007.03064.x CrossRefPubMedGoogle Scholar
  2. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucl Acids Res 25:3389–3402. doi: 10.1093/nar/25.17.3389 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Ariyarathne HM, Coyne DP, Jung G, Skroch PW, Vidaver AK, Steadman JR, Miklas PN, Bassett MX (1999) Molecular mapping of disease resistance genes for halo blight, common bacterial blight, and bean common mosaic virus in a segregating population of common bean. J Am Soc Hortic Sci 124:654–662Google Scholar
  4. Arnold DL, Lovell HC, Jackson RW, Mansfield JW (2011) Pseudomonas syringae pv. phaseolicola: from ‘has bean’ to supermodel. Mol Plant Pathol 12:617–627. doi: 10.1111/j.1364-3703.2010.00697.x CrossRefPubMedGoogle Scholar
  5. Ashfield T, Bocian A, Held D, Henk AD, Marek LF, Danesh D, Peñuela S, Meksem K, Lightfoot DA, Young ND, Shoemaker RC, Innes RW (2003) Genetic and physical localization of the soybean Rpg1-b disease resistance gene reveals a complex locus containing several tightly linked families of NBS-LRR genes. Mol Plant-Microbe Interact 16:817–826. doi: 10.1094/MPMI.2003.16.9.817 CrossRefPubMedGoogle Scholar
  6. Bello MH, Moghaddam SM, Massoudi M, McClean PE, Cregan PB, Miklas PN (2014) Application of in silico bulked segregant analysis for rapid development of markers linked to bean common mosaic virus resistance in common bean. BMC Genomics 15:903. doi: 10.1186/1471-2164-15-903 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Berrocal-Lobo M, Stone S, Yang X, Antico J, Callis J, Ramonell KM, Somerville S (2010) ATL9, a RING zinc finger protein with E3 ubiquitin ligase activity implicated in chitin- and NADPH oxidase-mediated defense responses. PLoS One 5:e14426. doi: 10.1371/journal.pone.0014426 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Bisgrove SR, Simonich MT, Smith NM, Sattler A, Innes RW (1994) A disease resistance gene in Arabidopsis with specificity for two different pathogen avirulence genes. Plant Cell 6(7):927–933. doi: 10.1105/tpc.6.7.927 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Chen K, Du L, Chen Z (2003) Sensitization of defense responses and activation of programmed cell death by a pathogen-induced receptor-like protein kinase in Arabidopsis. Plant Mol Biol 53:61–74. doi: 10.1023/B:PLAN.0000009265.72567.58 CrossRefPubMedGoogle Scholar
  10. Chen NWG, Sévignac M, Thareau V, Magdelenat G, David P, Ashfield T, Innes RW, Geffroy V (2010) Specific resistances against Pseudomonas syringae effectors AvrB and AvrRpm1 have evolved differently in common bean (Phaseolus vulgaris), soybean (Glycine max), and Arabidopsis thaliana. New Phytol 187:941–956. doi: 10.1111/j.1469-8137.2010.03337.x CrossRefPubMedPubMedCentralGoogle Scholar
  11. Chung C, Longfellow JM, Walsh EK, Kerdieh Z, Esbroeck GV, Balint-Kurti P, Nelson R (2010) Resistance loci affecting distinct stages of fungal pathogenesis: use of introgression lines for QTL mapping and characterization in the maize-Setosphaeria turcica pathosystem. BMC Plant Biol 10:103. doi: 10.1186/1471-2229-10-103 CrossRefPubMedPubMedCentralGoogle Scholar
  12. Collmer CW, Marston MF, Taylor JC, Jahn M (2000) The I gene of bean: a dosage-dependent allele conferring extreme resistance, hypersensitive resistance, or spreading vascular necrosis in response to the potyvirus bean common mosaic virus. Mol Plant-Microbe Interact 13:1266–1270. doi: 10.1094/MPMI.2000.13.11.1266 CrossRefPubMedGoogle Scholar
  13. Collier SM, Moffett P (2009) NB-LRRs work a “bait and switch” on pathogens. Trends Plant Sci 14:521–529. doi: 10.1016/j.tplants.2009.08.001 CrossRefPubMedGoogle Scholar
  14. Czernic P, Visser B, Sun W, Savoure A, Deslandes L, Marco Y, Van Montagu M, Verbruggen N (1999) Characterization of an Arabidopsis thaliana receptor-like protein kinase gene activated by oxidative stress and pathogen attack. Plant J 18:321–327. doi: 10.1046/j.1365-313X.1999.00447.x CrossRefPubMedGoogle Scholar
  15. Day B, Dahlbeck D, Staskawicz BJ (2006) NDR1 interaction with RIN4 mediates the differential activation of multiple disease resistance pathways in Arabidopsis. Plant Cell 18:2782–2791. doi: 10.1105/tpc.106.044693 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Dievart A, Clark SE (2004) LRR-containing receptors regulating plant development and defense. Development 131:251–261. doi: 10.1242/dev.00998 CrossRefPubMedGoogle Scholar
  17. Eitas TK, Nimchuk ZL, Dangl JL (2008) Arabidopsis TAO1 is a TIR-NB-LRR protein that contributes to disease resistance induced by the Pseudomonas syringae effector AvrB. Proc Natl Acad Sci U S A 105:6475–6480. doi: 10.1073/pnas.0802157105 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Fisher ML, Kyle MM (1994) Inheritance of resistance to potyviruses in Phaseolus vulgaris L. III. Cosegregation of phenotypically similar dominant responses to nine potyviruses. Theor Appl Genet 89:818–823. doi: 10.1007/BF00224503 PubMedGoogle Scholar
  19. Flor HH (1971) Current status of the gene-for-gene concept. Annu Rev Phytopathol 9:275–296. doi: 10.1146/ CrossRefGoogle Scholar
  20. Foulongne M, Pascal T, Pfeiffer F, Kervella J (2003) QTLs for powdery mildew resistance in peach × Prunus davidiana crosses: consistency across generations and environments. Mol Breed 12:33–50. doi: 10.1023/A:1025417507358 CrossRefGoogle Scholar
  21. Fourie D, Miklas PN, Ariyarathne HM (2004) Genes conditioning halo blight resistance to races 1, 7, and 9 occur in a tight cluster. Ann Rep Bean Improv Coop 47:103–104Google Scholar
  22. Gebhardt C, Valkonen JPT (2001) Organization of genes controlling disease resistance in the potato genome. Ann Rev Phytopathol 39:79–102. doi: 10.1146/annurev.phyto.39.1.79 CrossRefGoogle Scholar
  23. Geffroy V, Creusot F, Falquet J, Sévignac M, Adam-Blondon AF, Bannerot H, Gepts P, Dron M (1998) A family of LRR sequences in the vicinity of the Co-2 locus for anthracnose resistance in Phaseolus vulgaris and its potential use in marker-assisted selection. Theor Appl Genet 96:494–502. doi: 10.1007/s001220050766 CrossRefPubMedGoogle Scholar
  24. González AM, Yuste-Lisbona FJ, Rodiño AP, De Ron AM, Capel C, García-Alcázar M, Lozano R, Santalla M (2015) Uncovering the genetic architecture of Colletotrichum lindemuthianum resistance through QTL mapping and epistatic interaction analysis in common bean. Front Plant Sci 6:141. doi: 10.3389/fpls.2015.00141 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Grant RG, Godiard L, Straube E, Ashfield T, Lewald J, Sattler A, Innes RW, Dangl JL (1995) Structure of the Arabidopsis RPM1 gene enabling dual specificity disease resistance. Science 269:843–846. doi: 10.1126/science.7638602 CrossRefPubMedGoogle Scholar
  26. Holland JB, Nyquist WE, Cervantes-Martinez CT (2003) Estimating and interpreting heritability for plant breeding: an update. In: Janick J (ed) Plant breeding reviews, vol 22. Wiley, New York, pp. 9–111. doi: 10.1002/9780470650202.ch2 Google Scholar
  27. Holland JB (2006) Estimating genotypic correlations and their standard errors using multivariate restricted maximum likelihood estimation with SAS Proc MIXED. Crop Sci 46:642–654. doi: 10.2135/cropsci2005.0191 CrossRefGoogle Scholar
  28. Hulbert S, Bennetzen J (1991) Recombination at the Rp1 locus of maize. Mol Gen Genomics 226:377–382. doi: 10.1007/BF00260649 Google Scholar
  29. Hulbert SH, Webb CA, Smith SM, Sun Q (2001) Resistance gene complexes: evolution and utilization. Annu Rev Phytopathol 39:285–312. doi: 10.1146/annurev.phyto.39.1.285 CrossRefPubMedGoogle Scholar
  30. Islam MR, Shepherd KW, Mayo GME (1989) Recombination among genes at the L group in flax conferring resistance to rust. Theor Appl Genet 77:540–546. doi: 10.1007/BF00274276 CrossRefPubMedGoogle Scholar
  31. Jones J, Dangl J (2006) The plant immune system. Nature 444:323–329. doi: 10.1038/nature05286 CrossRefPubMedGoogle Scholar
  32. Journot-Catalino N, Somssich IE, Roby D, Kroj T (2006) The transcription factors WRKY11 and WRKY17 act as negative regulators of basal resistance in Arabidopsis thaliana. Plant Cell 18:3289–3302. doi: 10.1105/tpc.106.044149 CrossRefPubMedPubMedCentralGoogle Scholar
  33. Kang YJ, Kim KH, Shim S, Yoon MY, Sun S, Kim MY, Van K, Lee S (2012) Genome-wide mapping of NBS-LRR genes and their association with disease resistance in soybean. BMC Plant Biol 12:139. doi: 10.1186/1471-2229-12-139 CrossRefPubMedPubMedCentralGoogle Scholar
  34. Keen NT (1990) Gene-for-gene complementarity in plant–pathogen interactions. Annu Rev Genet 24:447–463. doi: 10.1146/ CrossRefPubMedGoogle Scholar
  35. King EO, Ward MK, Raney DE (1954) Two simple media for demonstration of pyocyanin and fluorescin. J Lab Clin Med 44:301–307PubMedGoogle Scholar
  36. Kou Y, Wang S (2010) Broad-spectrum and durability: understanding of quantitative disease resistance. Curr Opin Plant Biol 13:181–185. doi: 10.1016/j.pbi.2009.12.010
  37. Kover PX, Chevereud J (2007) The genetic basis of quantitative variation in susceptibility of Arabidopsis thaliana to Pseudomonas syringae (PstDC3000): evidence for a new genetic factor of large effect. New Phytol 174:172–181. doi: 10.1111/j.1469-8137.2007.01985.x CrossRefPubMedGoogle Scholar
  38. Leister D (2004) Tandem and segmental gene duplication and recombination in the evolution of plant disease resistance genes. Trends Genet 20:116–122. doi: 10.1016/j.tig.2004.01.007 CrossRefPubMedGoogle Scholar
  39. Marcel TC, Gorguet B, Ta MT, Kohutova Z, Vels A, Niks RE (2008) Isolate specificity of quantitative trait loci for partial resistance of barley to Puccinia hordei confirmed in mapping populations and near-isogenic lines. New Phytol 177:743–755. doi: 10.1111/j.1469-8137.2007.02298.x CrossRefPubMedGoogle Scholar
  40. Martin GB, Frary A, Wu T, Brommonschenkel SH, Earle ED, Tanksley SD (1994) A member of the tomato Pto gene family confers sensitivity to fenthion resulting in rapid cell death. Plant Cell 6:1543–1552. doi: 10.1105/tpc.6.11.1543 CrossRefPubMedPubMedCentralGoogle Scholar
  41. McDowell JM, Simon SA (2006) Recent insights into R gene evolution. Mol Plant Pathol 7:437–448. doi: 10.1111/j.1364-3703.2006.00342.x CrossRefPubMedGoogle Scholar
  42. McDowell JM, Simon SA (2008) Molecular diversity at the plant-pathogen interface. Dev Comp Immunol 32:736–744. doi: 10.1016/j.dci.2007.11.005 CrossRefPubMedGoogle Scholar
  43. Melotto M, Afanador L, Kelly JD (1996) Development of a SCAR marker linked to the I gene in common bean. Genome 39:1216–1219. doi: 10.1139/g96-155 CrossRefPubMedGoogle Scholar
  44. Melotto M, Coelho MF, Pedrosa-Harand A, Kelly JD, Camargo LEA (2004) The anthracnose resistance locus Co-4 of common bean is located on chromosome 3 and contains putative disease resistance-related genes. Theor Appl Genet 109:690–699. doi: 10.1007/s00122-004-1697-6 CrossRefPubMedGoogle Scholar
  45. Meyers BC, Kozik A, Griego A, Kuang HH, Michelmore RW (2003) Genome-wide analysis of NBS-LRR-encoding genes in Arabidopsis. Plant Cell 15:809–834. doi: 10.1105/tpc.​009308 CrossRefPubMedPubMedCentralGoogle Scholar
  46. Meyers BC, Kaushik S, Nandety RS (2005) Evolving disease resistance genes. Curr Opin Plant Biol 8:129–134. doi: 10.1016/j.pbi.2005.01.002 CrossRefPubMedGoogle Scholar
  47. Miklas PN, Fourie D, Wagner J, Larsen RC, Mienie CMS (2009) Tagging and mapping Pse-1 gene for resistance to halo blight in common bean host differential cultivar UI-3. Crop Sci 49:41–48. doi: 10.2135/cropsci2008.03.0145 CrossRefGoogle Scholar
  48. Miklas PN, Fourie D, Trapp J, Larsen RC, Chavarro C, Blair MW, Gepts P (2011) Genetic characterization and molecular mapping Pse-2 gene for resistance to halo blight in common bean. Crop Sci 51:2439–2448. doi: 10.2135/cropsci2011.01.0046 CrossRefGoogle Scholar
  49. Miklas PN, Fourie D, Trapp J, Davis J, Myers JR (2014) New loci including conferring resistance to halo bacterial blight on chromosome Pv04 in common bean. Crop Sci 54:2099–2108. doi: 10.2135/cropsci2014.03.0213 CrossRefGoogle Scholar
  50. Mills LJ, Silbernagel MJ (1992) A rapid screening techniques to combine resistance to halo blight and bean common mosaic virus in Phaseolus vulgaris L. Euphytica 58:201–208. doi: 10.1007/BF00025251 CrossRefGoogle Scholar
  51. Mindrinos M, Katagiri F, Yu GL, Ausubel FM (1994) The Arabidopsis thaliana disease resistance gene RPS2 encodes a protein containing a nucleotide-binding site and leucine-rich repeats. Cell 78:1089–1099. doi: 10.1016/0092-8674(94)90282-8 CrossRefPubMedGoogle Scholar
  52. Moore RE, Niemczura WP, Kwok OCH, Patil SS (1984) Inhibitors of ornithine carbamoyltransferase from Pseudomonas syringae pv. phaseolicola. Revised structure of phaseolotoxin. Tetrahedron Lett 25:3931–3934. doi: 10.1016/0040-4039(84)80033-7 CrossRefGoogle Scholar
  53. Murillo J, Bardaji L, Führer E (2010) La grasa de las judías, causada por la bacteria Pseudomonas syringae pv. phaseolicola. Phytoma 224:27–32Google Scholar
  54. Perchepied L, Dogimont C, Pitrat M (2005) Strain-specific and recessive QTLs involved in the control of partial resistance to Fusarium oxysporum f. sp. melonis race 1.2 in a recombinant inbred line population of melon. Theor Appl Genet 111:65–74. doi: 10.1007/s00122-005-1991-y CrossRefPubMedGoogle Scholar
  55. Pérez-Vega E, Pañeda A, Rodríguez-Suárez C, Campa A, Giraldez R, Ferreira JJ (2010) Mapping of QTLs for morpho-agronomic and seed quality traits in a RIL population of common bean (Phaseolus vulgaris L.). Theor Appl Genet 120:1367–1380. doi: 10.1007/s00122-010-1261-5 CrossRefPubMedGoogle Scholar
  56. Poland JA, Balint-Kurti PJ, Wisser RJ, Pratt RC, Nelson RJ (2009) Shades of gray: the world of quantitative disease resistance. Trends Plant Sci 14:21–29. doi: 10.1016/j.tplants.2008.10.006 CrossRefPubMedGoogle Scholar
  57. Prosen D, Hatziloukas E, Schaad NW, Panopoulos NJ (1993) Specific detection of Pseudomonas syringae pv. phaseolicola DNA in bean seed polymerase chain reaction-based amplification of a phaseolotoxin gene region. Phytopathology 83:965–970. doi: 10.1094/Phyto-83-965 CrossRefGoogle Scholar
  58. Reuber TL, Ausubel FM (1996) Isolation of Arabidopsis genes that differentiate between resistance responses mediated by the rps2 and rpm1 disease resistance genes. Plant Cell 8:241–249. doi: 10.1105/tpc.8.2.241 CrossRefPubMedPubMedCentralGoogle Scholar
  59. Saettler AW (1991) Diseases caused by bacteria. In: Hall, R (ed) Compendium of bean diseases. APS Press Minnesota, 29–31.Google Scholar
  60. Saikia R, Kumar R, Singh T, Srivastava AK, Arora DK, Lee MW (2004) Induction of defense related enzymes and pathogenesis related proteins in Pseudomonas fluorescens-treated chickpea in response to infection by Fusarium oxysporum f. sp. ciceri. Mycobiology 32:47–52. doi: 10.4489/MYCO.2004.32.1.047 CrossRefGoogle Scholar
  61. Schwartz HF, Brick MA, Harveson RM, Franc GD (2004) Disease management, pp. 109–143. In: Dry bean production and pest management. APS Press, Minneapolis, MN.Google Scholar
  62. Schmutz J, McClean PE, Mamidi S, Wu GA, Cannon SB, Grimwood J, Jenkins J, Shu S, Song Q, Chavarro C et al (2014) A reference genome for common bean and genome-wide analysis of dual domestications. Nature Genet 46:707–713. doi: 10.1038/ng.3008 CrossRefPubMedGoogle Scholar
  63. Shaner G, Finney RE (1977) The effect of nitrogen fertilization on the expression of slow-mildewing resistance in Knox wheat. Phytopathology 67:1051–1056. doi: 10.1094/Phyto-67-1051 CrossRefGoogle Scholar
  64. Shao F, Golstein C, Ade J, Stoutemyer M, Dixon JE, Innes RW (2003) Cleavage of Arabidopsis PBS1 by a bacterial type III effector. Science 301:1230–1233. doi: 10.1126/science.1085671 CrossRefPubMedGoogle Scholar
  65. Shoemaker RC, Polzin K, Labate J, Specht J, Brummer EC, Olson T, Young N, Concibido V, Wilcox J, Tamulonis JP et al (1996) Genome duplication in soybean (Glycine subgenus soja). Genetics 144:329–338PubMedPubMedCentralGoogle Scholar
  66. St Clair DA (2010) Quantitative disease resistance and quantitative resistance loci in breeding. Annu Rev Phytopathol 48:247–268. doi: 10.1146/annurev-phyto-080508-081904 CrossRefPubMedGoogle Scholar
  67. Taylor JD, Teverson DM, Allen DJ, Pastor-Corrales MA (1996a) Identification and origin of races of Pseudomonas syringae pv. phaseolicola from Africa and other bean growing areas. Plant Pathol 45:469–478. doi: 10.1046/j.1365-3059.1996.d01-147.x CrossRefGoogle Scholar
  68. Taylor JD, Teverson DM, Davis JHC (1996b) Sources of resistance to Pseudomonas syringae pv. phaseolicola races in Phaseolus vulgaris. Plant Pathol 45:479–485. doi: 10.1046/j.1365-3059.1996.d01-148.x CrossRefGoogle Scholar
  69. Terán H, Lema M, Webster D, Singh S (2009) 75 years of breeding pinto bean for resistance to diseases in the United States. Euphytica 167:341–351. doi: 10.1007/s10681-009-9892-9 CrossRefGoogle Scholar
  70. Teverson DM (1991) Genetics of pathogenicity and resistance in the halo-blight disease of beans in Africa. PhD thesis, University of Birmingham.Google Scholar
  71. Trabanco N, Asensio-Manzanera MC, Pérez-Vega E, Ibeas A, Campa A, Ferreira JJ (2014) Identification of quantitative trait loci involved in the response of common bean to Pseudomonas syringae pv. phaseolicola. Mol Breed 33:577–588. doi: 10.1007/s11032-013-9974-1 CrossRefGoogle Scholar
  72. Vallejos CE, Astua-Monge G, Jones V, Plyler TR, Sakiyama NS, Mackenzie SA (2006) Genetic and molecular characterization of the I locus of Phaseolus vulgaris. Genetics 172:1229–1242. doi: 10.1534/genetics.105.050815 CrossRefPubMedPubMedCentralGoogle Scholar
  73. Venugopal SC, Chanda B, Vaillancourt L, Kachroo A, Kachroo P (2009) The common metabolite glycerol-3-phosphate is a novel regulator of plant defense signaling. Plant Signal Behav 4(8):746–749. doi: 10.4161/psb.4.8.9111 CrossRefPubMedPubMedCentralGoogle Scholar
  74. Voorrips RE (2002) MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered 93(1):77–78. doi: 10.1093/jhered/93.1.77 CrossRefPubMedGoogle Scholar
  75. Walker JC, Patel PN (1964) Inheritance of resistance to halo blight of bean. Phytopathology 54:952–954Google Scholar
  76. Wang CS, Rutledge JJ, Gianola D (1994) Bayesian analysis of mixed linear models via Gibbs sampling with an application to litter size in Iberian pigs. Genet Select Evol 26:91–115. doi: 10.1186/1297-9686-26-2-91 CrossRefGoogle Scholar
  77. Wang S, Bai Y, Shen C, Wu Y, Zhang S, Jiang D, Guilfoyle TJ, Chen M, Qi Y (2010) Auxin-related gene families in abiotic stress response in Sorghum bicolor. Funct Integr Genomics 10:533–546. doi: 10.1007/s10142-010-0174-3 CrossRefPubMedGoogle Scholar
  78. Witsenboer H, Kesseli RV, Fortin MG, Stanghellini M, Michelmore RW (1995) Sources and genetic structure of a cluster of genes for resistance to three pathogens in lettuce. Theor Appl Genet 91:178–188. doi: 10.1007/BF00220875 CrossRefPubMedGoogle Scholar
  79. Yaish MWF, Sosa D, Vences FJ, Vaquero F (2006) Genetic mapping of quantitative resistance to race 5 of Pseudomonas syringae pv. phaseolicola in common bean. Euphytica 152:397–404. doi: 10.1007/s10681-006-9227-z CrossRefGoogle Scholar
  80. Yang J, Hu C, Hu H, Yu R, Xia Z, Ye X, Zhu J (2008) QTLNetwork: mapping and visualizing genetic architecture of complex traits in experimental populations. Bioinformatics 24:721–723. doi: 10.1093/bioinformatics/btm494 CrossRefPubMedGoogle Scholar
  81. Yang Y, Zhao J, Liu P, Xing H, Li C, Wei G, Kang Z (2013) Glycerol-3-phosphate metabolism in wheat contributes to systemic acquired resistance against Puccinia striiformis f. Sp. tritici. PLoS One 8:81756. doi: 10.1371/journal.pone.0081756 CrossRefGoogle Scholar
  82. Young ND (1996) QTL mapping and quantitative disease resistance in plants. Annu Rev Phytopathology 34:479–501. doi: 10.1146/annurev.phyto.34.1.479 CrossRefGoogle Scholar
  83. Zaiter HZ, Coyne DP (1984) Testing inoculation methods and sources of resistance to the halo blight bacteria (Pseudomonas syringae pv. phaseolicola) in Phaseolus vulgaris. Euphytica 33:133–141. doi: 10.1007/BF000225 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Ana M. González
    • 1
  • Fernando J. Yuste-Lisbona
    • 2
  • Luis Godoy
    • 1
  • Antonia Fernández-Lozano
    • 2
  • A. Paula Rodiño
    • 1
  • Antonio M. De Ron
    • 1
  • Rafael Lozano
    • 2
  • Marta Santalla
    • 1
  1. 1.Grupo de Biología de Agrosistemas, Misión Biológica de Galicia-CSICPontevedraSpain
  2. 2.Departamento de Biología y Geología (Genética), Centro de Investigación en Biotecnología Agroalimentaria (BITAL)Universidad de AlmeríaAlmeríaSpain

Personalised recommendations