Molecular Breeding

, 36:103 | Cite as

Genetic analysis of shoot fresh weight in a cross of wild (G. soja) and cultivated (G. max) soybean

  • Sovetgul Asekova
  • Krishnanand P. Kulkarni
  • Gunvant Patil
  • Minsu Kim
  • Jong Tae Song
  • Henry T. Nguyen
  • J. Grover Shannon
  • Jeong-Dong LeeEmail author


Shoot fresh weight (SFW) is one of the parameters, used to estimate the total plant biomass yield in soybean. In the present study, a total of 188 F5:8 recombinant inbred lines (RIL) derived from an interspecific cross of PI 483463 (Glycine soja) and Hutcheson (Glycine max) were investigated for SFW variation in the field for three consecutive years. The parental lines and RILs were phenotyped in the field at the R6 stage by measuring total biomass in kg/plot to identify the QTLs for SFW. Three QTLs qSFW6_1, qSFW15_1, and qSFW19_1 influencing SFW were identified on chromosome 6, 15, and 19, respectively. The QTL qSFW19_1 flanked between the markers BARC-044913-08839 and BARC-029975-06765 was the stable QTL expressed in all the three environments. The phenotypic variation explained by the QTLs across all environments ranged from 6.56 to 21.32 %. The additive effects indicated contribution of alleles from both the parents and additive × environment interaction effects affected the expression of SFW QTL. Screening of the RIL population with additional SSRs from the qSFW19_1 region delimited the QTL between the markers SSR19-1329 and BARC-29975-06765. QTL mapping using bin map detected two QTLs, qSFW19_1A and qSFW19_1B. The QTL qSFW19_1A mapped close to the Dt1 gene locus, which affects stem termination, plant height, and floral initiation in soybean. Potential candidate genes for SFW were pinpointed, and sequence variations within their sequences were detected using high-quality whole-genome resequencing data. The findings in this study could be useful for understanding genetic basis of SFW in soybean.


Soybean Wild soybean Forage Shoot fresh weight Candidate gene 



This work was carried out with the support of the Next-Generation BioGreen 21 Program for Agriculture and Technology Development (Project No. PJ1109201), Rural Development Administration, Republic of Korea.

Authors' contributions

S Asekova, M. Kim performed field experiment, S. Asekova, K.P. Kulkarni, and G. Patil performed QTL mapping, genotyping, and genetic analysis, S. Asekova and K.P. Kulkarni contributed to drafting the manuscript, and J.G. Shannon, J.T. Song, H.T. Nguyen, and J.D. Lee editing manuscript. All authors read and approved the final manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standards

The authors declare that the experiments comply with the current laws of counties in which the experiments were performed.

Supplementary material

11032_2016_530_MOESM1_ESM.docx (133 kb)
Supplementary material 1 (DOCX 133 kb)
11032_2016_530_MOESM2_ESM.docx (434 kb)
Supplementary material 2 (DOCX 433 kb)
11032_2016_530_MOESM3_ESM.docx (15 kb)
Supplementary material 3 (DOCX 15 kb)
11032_2016_530_MOESM4_ESM.docx (15 kb)
Supplementary material 4 (DOCX 15 kb)
11032_2016_530_MOESM5_ESM.docx (15 kb)
Supplementary material 5 (DOCX 15 kb)


  1. Abdul-Baki AA, Morse RD, Devine TE, Teasdale JR (1997) Broccoli production in forage soybean and foxtail millet cover crop mulches. Hort Sci 32:836–839Google Scholar
  2. Anhalt UCM, Heslop- Harrison JS, Piepho HP, Byrne S, Barth S (2009) Quantitative trait loci mapping for biomass yield traits in a Lolium inbred line derived F2 population. Euphytica 170:99–107CrossRefGoogle Scholar
  3. Asekova S, Shannon JG, Lee JD (2014) The current status of forage soybean. Plant Breed Biotech 2:334–341CrossRefGoogle Scholar
  4. Bachlava E, Dewey RE, Burton JW, Cardinal AJ (2009) Mapping and comparison of quantitative trait loci for oleic acid seed content in two segregating soybean populations. Crop Sci 49:433–442CrossRefGoogle Scholar
  5. Benlloch R, Berbel A, Serrano-Mislata A, Madueño F (2007) Floral initiation and inflorescence architecture: a comparative view. Ann Botany 100:659–676CrossRefGoogle Scholar
  6. Blount AR, Wright DL, Sprenkel RK, Hewitt TD, Myer RO (2002) Forage soybeans for grazing, hay, and silage. Agronomy Department, UF/IFAS Extension, SS-AGR-180. Accessed 26 Dec 2015
  7. Brensha W, Kantartzi SK, Meksem K, Grier RL, Barakat A, Lightfoot DA, Kassem MA (2012) Genetic analysis of root and shoot traits in the ‘Essex’ by ‘Forrest’ recombinant inbred line (RIL) population of soybean [Glycine max (L.) Merr.]. J Plant Geno Sci 1:1–9CrossRefGoogle Scholar
  8. Buss GR, Camper HM Jr, Roane CW (1988) Registration of ‘Hutcheson’ soybean. Crop Sci 28:1024CrossRefGoogle Scholar
  9. Buxton DR (1994) Quality-related characteristics of forages as influenced by plant environment and agronomic factors. Anim Feed Sci Tech 59:37–49CrossRefGoogle Scholar
  10. Chen Z, Wang B, Dong X, Liu H, Ren L, Chen J, Hauck A, Song W, Lai J (2014) An ultra-high density bin-map for rapid QTL mapping for tassel and ear architecture in a large F2 maize population. BMC Genom 15:433CrossRefGoogle Scholar
  11. Colasanti J, Yuan Z, Sundaresan V (1998) The indeterminate gene encodes a zinc finger protein and regulates a leaf-generated signal required for the transition to flowering in maize. Cell 93:593–603CrossRefPubMedGoogle Scholar
  12. Concibido VC, Vallee BL, Mclaird P, Pineda N, Meyer J, Hummel L, Yang J, Wu K, Delannay X (2003) Introgression of a quantitative trait locus for yield from Glycine soja into commercial soybean cultivars. Theor Appl Genet 106:575–582PubMedGoogle Scholar
  13. Devine TE, Hatley EO, Stamer DE (1998) Registration of ‘Derry’ forage soybean. Crop Sci 38:1719Google Scholar
  14. Doyle JJ, Doyle JL (1990) Isolation of plant DNA from fresh tissues. Focus 12:13–15Google Scholar
  15. Edwards D, Batley J, Snowdon RJ (2013) Accessing complex crop genomes with next-generation sequencing. Theor Appl Genet 126:1–11CrossRefPubMedGoogle Scholar
  16. El-Lithy ME, Clerk EJM, Ruys GJ, Koornneef M, Vreugdenhil D (2004) Quantitative trait locus analysis of growth-related traits in a new Arabidopsis recombinant inbred population. Plant Physiol 135:444–458CrossRefPubMedPubMedCentralGoogle Scholar
  17. El-Soda M, Malosetti M, Zwaan BJ, Koornneef M, Aarts MGM (2014) Genotype x environment interaction QTL mapping in plants: lessons from Arabidopsis. Trends Plant Sci 19:390–398CrossRefPubMedGoogle Scholar
  18. Fehr WR, Caviness CE, Burmood DT, Pennington JS (1971) Stage of development descriptions for soybeans, Glycine max (L.) Merrill. Crop Sci 11:929–931CrossRefGoogle Scholar
  19. Feurtado JA, Huang D, Wicki-Stordeur L, Hemstock LE, Potentier MS, Tsang EWT, Cutler AJ (2011) The Arabidopsis C2H2 zinc finger INDETERMINATE DOMAIN1/ENHYDROUS promotes the transition to germination by regulating light and hormonal signaling during seed maturation. Plant Cell 23:1772–1794CrossRefPubMedPubMedCentralGoogle Scholar
  20. Golzarian MR, Frick RA, Rajendran K, Berger B, Roy S, Tester M, Lun DS (2011) Accurate inference of shoot biomass from high-throughput images of cereal plants. Plant Methods 7:2CrossRefPubMedPubMedCentralGoogle Scholar
  21. Ha BK, Vuong TD, Velusamy V, Nguyen HT, Shannon G, Lee JD (2013) Genetic mapping of quantitative trait loci conditioning salt tolerance in wild soybean (Glycine soja) PI 483463. Euphytica 193:79–88CrossRefGoogle Scholar
  22. Ha BK, Kim HJ, Velusamy V, Vuong TD, Nguyen HT, Shannon JG, Lee JD (2014) Identification of quantitative trait loci controlling linolenic acid concentration in PI 483463 (Glycine soja). Theor Appl Genet 127:1501–1512CrossRefPubMedGoogle Scholar
  23. Hanson CH, Robinson HF, Comstock RE (1956) Biometrical studies of yield in segregating populations of Korean Lespedeza. J Agron 48:268–272CrossRefGoogle Scholar
  24. He Q, Yang H, Xiang S, Wang W, Xing G, Zhao T, Gai J (2014) QTL mapping for the number of branches and pods using wild chromosome segment substitution lines in soybean [Glycine max (L.) Merr.]. Plant Gen Res 12:172–177CrossRefGoogle Scholar
  25. Hintz RW, Albrecht KA, Oplinger ES (1992) Yield and quality of soybean forage as affected by cultivar and management practices. J Agron 84:795–798CrossRefGoogle Scholar
  26. Hu WJ, Harding SA, Lung J, Popko JL, Ralph J, Stokke DD, Tsai CJ, Chiang VL (1999) Repression of lignin biosynthesis promotes cellulose accumulation and growth in transgenic trees. Nature Biotechnol 17:808–812CrossRefGoogle Scholar
  27. Hyten DL, Song Q, Zhu Y, Choi IY, Nelson RL, Costa JM, Specht JE, Shoemaker RC, Cregan PB (2006) Impacts of genetic bottlenecks on soybean genome diversity. PNAS 103:16666–16671CrossRefPubMedPubMedCentralGoogle Scholar
  28. Hyten D, Song Q, Choi IY, Yoon MS, Specht J, Matukumalli L, Nelson R, Shoemaker R, Young N, Cregan P (2008) High-throughput genotyping with the GoldenGate assay in the complex genome of soybean. Theor Appl Genet 116:945–952CrossRefPubMedGoogle Scholar
  29. Hyten DL, Choi IY, Song Q, Specht JE, Carter TE, Shoemaker RC, Hwang E-Y, Matukumalli LK, Cregan PB (2010) A high density integrated genetic linkage map of soybean and the development of a 1536 Universal Soy Linkage Panel for QTL mapping. Crop Sci 50:960–968CrossRefGoogle Scholar
  30. Ingley E, Hemmings BA (1994) Pleckstrin homology (PH) domains in signal transduction. Cell Biochem Biophys 56:436–443Google Scholar
  31. Jahn CE, Mckay JK, Mauleon R, Stephens J, McNally KL, Bush DR, Leung H, Leach JE (2011) Genetic variation in biomass traits among 20 diverse rice varieties. Plant Physiol 155:157–168CrossRefPubMedGoogle Scholar
  32. Kilian B, Graner A (2012) NGS technologies for analyzing germplasm diversity in genebanks. Oxford University Press. doi: 10.1093/bfgp/elr046
  33. Koester RP, Skoneczka JA, Cary TR, Diers BW, Ainsworth EA (2014) Historical gains in soybean [Glycine max (L.) Merr.] seed yield are driven by linear increases in light interception, energy conversion, and partitioning efficiencies. J Exp Bot 65:3311–3321CrossRefPubMedPubMedCentralGoogle Scholar
  34. Koivisto JM, Devine TE, Lane GPF, Sawyer CA, Brown HJ (2003) Forage soybeans [Glycine max (L.) Merr.] in the United Kingdom: test of new cultivars. Agronomie 23:287–291CrossRefGoogle Scholar
  35. Kosambi DD (1943) The estimation of map distances from recombination values. Ann Eugen 12:172–175CrossRefGoogle Scholar
  36. LaFramboise T (2009) Single nucleotide polymorphism arrays: a decade of biological, computational and technological advances. Nucl Acids Res. doi: 10.1093/nar/gkp552 PubMedPubMedCentralGoogle Scholar
  37. Lam HM, Xu X, Liu X, Chen W, Yang G, Wong FL, Li MW, He W, Qin N, Wang B, Li J, Jian M, Wang J, Shao G, Wang J, Sun SS, Zhang G (2010) Resequencing of 31 wild and cultivated soybean genomes identifies patterns of genetic diversity and selection. Nat Genet 42:1053–1059CrossRefPubMedGoogle Scholar
  38. Langewisch T, Zhang H, Vincent R, Joshi T, Xu D, Bilyeu K (2014) Major soybean maturity gene haplotypes revealed by SNPViz analysis of 72 sequenced soybean genomes. PLoS ONE 9:e94150CrossRefPubMedPubMedCentralGoogle Scholar
  39. Lark KG, Chase K, Fred A, Mansur LM, Orf JH (1995) Interactions between quantitative trait loci in soybean in which trait variation at one locus is conditional upon a specific allele at another. PNAS 92:4656–4660CrossRefPubMedPubMedCentralGoogle Scholar
  40. Lee SH, Bailey MA, Mian MAR, Shipe ER, Ashley DA, Parrott WA, Hussey RS, Boerma HR (1996) Identification of quantitative trait loci for plant height, lodging, and maturity in a soybean population segregating for growth habit. Theor Appl Genet 92:516–523CrossRefPubMedGoogle Scholar
  41. Lee JD, Shannon JG, Chung G, Hwang YH (2011) Wild soybean (Glycine soja Sieb. & Zucc)—a genetic source for soybean variety improvement. Kor Soybean Digest 28:7–15Google Scholar
  42. Lee EJ, Choi HJ, Shin DH, Kwon CH, Shannon JG, Lee JD (2014a) Evaluation of forage yield and quality in wild soybean (Glycine soja Sieb. and Zucc). Plant Breed Biotechnol 2:71–79CrossRefGoogle Scholar
  43. Lee EJ, Choi HJ, Shin DH, Kwon CH, Shannon JG, Lee JD (2014b) Evaluation of forage yield and quality for the accessions derived from inter-specific cross between wild and cultivated soybeans. Kor J Breed Sci 46:66–77CrossRefGoogle Scholar
  44. Lee S, Freewalt KR, McHale LK, Song Q, Jun TH, Michel AP, Dorrance AE, Mian MAR (2015) A high-resolution genetic linkage map of soybean based on 357 recombinant inbred lines genotyped with BARCSoySNP6K. Mol Breed 35:58CrossRefGoogle Scholar
  45. Li ZK, Yu SB, Lafitte HR, Huang N, Courtois B, Hittalmani S, Vijayakumar CH, Liu GF, Wang GC, Shashidhar HE, Zhuang JY, Zheng KL, Singh VP, Sidhu JS, Srivantaneeyakul S, Khush GS (2003) QTL × environment interactions in rice. I. Heading date and plant height. Theor Appl Genet 108:141–153CrossRefPubMedGoogle Scholar
  46. Li YD, Wang YJ, Tong YP, Gao JG, Zhang JS, Chen SY (2005) QTL mapping of phosphorus deficiency tolerance in soybean [Glycine max (L.) Merr.]. Euphytica 142:137–142CrossRefGoogle Scholar
  47. Li H, Ye G, Wang J (2007) A modified algorithm for the improvement of composite interval mapping. Genetics 175:361–374CrossRefPubMedPubMedCentralGoogle Scholar
  48. Liang Q, Cheng X, Mei M, Yan X, Liao H (2010) QTL analysis of root traits as related to phosphorus efficiency in soybean. Ann Bot 106:223–234CrossRefPubMedPubMedCentralGoogle Scholar
  49. Liang H, Yu Y, Yang H, Xu L, Wei D, Du H, Cui W, Zhang H (2014) Inheritance and QTL mapping of related root traits in soybean at the seedling stage. Theor Appl Genet 127:2127–2137CrossRefPubMedGoogle Scholar
  50. Liu B, Abe J (2010) QTL Mapping for photoperiod insensitivity of a Japanese soybean landrace Sakamotowase. J Hered 10:251–256CrossRefGoogle Scholar
  51. Liu GF, Yang J, Zhu J (2006) Mapping QTL for biomass yield and its components in rice (Oryza sativa L.). Acta Genetica Sinica 33:607–616CrossRefPubMedGoogle Scholar
  52. Liu B, Fujita T, Yan Z, Sakamoto S, Xu D, Abe J (2007) QTL Mapping of domestication-related traits in soybean (Glycine max). Ann Bot 100:1027–1038CrossRefPubMedPubMedCentralGoogle Scholar
  53. Liu B, Watanabe S, Uchiyama T, Kong F, Kanazawa A, Xia Z, Nagamatsu A, Arai M, Yamada T, Kitamura K, Masuta C, Harada K, Abe J (2010) The soybean stem growth habit gene Dt1 is an ortholog of Arabidopsis TERMINAL FLOWER1. Plant Physiol 153:198–210CrossRefPubMedPubMedCentralGoogle Scholar
  54. Liu L, QuC Wittkop B, Yi B, Xiao Y, HeY Snowdon RJ, Li J, Yin T (2013) A high-density SNP map for accurate mapping of seed fibre QTL in Brassica napus L. PLoS ONE 8:e83052CrossRefPubMedPubMedCentralGoogle Scholar
  55. Lu Y, Xu J, Yuan Z, Hao Z, Xie C, Li X, Shah T, Lan H, Zhang S, Rong T, Xu Y (2012) Comparative LD mapping using single SNPs and haplotypes identifies QTL for plant height and biomass as secondary traits of drought tolerance in maize. Mol Breed 30:407–418CrossRefGoogle Scholar
  56. Manavalan LP, Prince SJ, Musket TA, Chaky J, Deshmukh R, Vuong TD, Song L, Cregan PB, Nelson JC, Shannon JG, Specht JE, Nguyen HT (2015) Identification of novel QTL governing root architectural traits in an interspecific soybean population. PLoS ONE. doi: 10.1371/journal.pone.0120490 PubMedPubMedCentralGoogle Scholar
  57. Mansur LM, Lark KG, Kross H, Oliveira A (1993) Interval mapping of quantitative trait loci for reproductive, morphological, and seed traits of soybean (Glycine max L.). Theor Appl Genet 86:907–913PubMedGoogle Scholar
  58. Mansur LM, Orf JH, Chase K, Jarvik T, Cregan PB, Lark KG (1996) Genetic mapping of agronomic traits using recombinant inbred lines of soybean. Crop Sci 36:1327–1336CrossRefGoogle Scholar
  59. Medic J, Atkinson C, Hurburgh CR (2014) Current knowledge in soybean composition. J Am Oil Chem Soc 91:363–384CrossRefGoogle Scholar
  60. Meyer RC, Kusterer B, Lisec J, Steinfath M, Becher M, Scharr H, Melchinger AE, Selbig J, Schurr U, Willmitzer L, Altmann T (2010) QTL analysis of early stage heterosis for biomass in Arabidopsis. Theor Appl Genet 120:227–237CrossRefPubMedGoogle Scholar
  61. Orf JH, Chase K, Jarvik T, Mansur LM, Cregan PB, Adler FR, Lark KG (1999) Genetics of soybean agronomic traits: I. Comparison of three related recombinant inbred populations. Crop Sci 39:1642–1651CrossRefGoogle Scholar
  62. Patil G, Do T, Vuong TD, Valliyodan B, Lee JD, Chaudhary J, Shannon JG, Nguyen HT (2016) Genomic-assisted haplotype analysis and the development of high-throughput SNP markers for salinity tolerance in soybean. Sci Rep. doi: 10.1038/srep19199 Google Scholar
  63. Pauly M, Keegstra K (2008) Cell-wall carbohydrates and their modification as a resource for biofuels. Plant J 54:559–568CrossRefPubMedGoogle Scholar
  64. Perez-de-Castro MA, Vilanova S, Canizares J, Pascual L, Blanca MJ, Diez JM, Prohens J, Pico B (2012) Application of genomic tools in plant breeding. Curr Genomics 13:179–195CrossRefPubMedPubMedCentralGoogle Scholar
  65. Praefcke GJ, McMahon HT (2004) The dynamin superfamily: universal membrane tubulation and fission molecules? Nat Rev Mol Cell Biol 5:133–147CrossRefPubMedGoogle Scholar
  66. Probst AH, Judd RW (1973) Origin, U.S. history and development, and world distribution. In: Caldwell BE (ed) Soybeans: improvement, production, and uses. American Society of Agronomy, Madison, pp 1–15Google Scholar
  67. Rao SC, Mayeux HS, Northup BK (2005) Performance of forage soybean in the southern Great Plains. Crop Sci 5:1973–1977CrossRefGoogle Scholar
  68. SAS Institute (2013) SAS/STAT 9.4 user’s guide. SAS Inst. Inc., Cary, NC27513-2414Google Scholar
  69. Serba DD, Daverdin G, Bouton JH, Devos KM, Brummer EC, Saha MC (2015) Quantitative trait loci (QTL) underlying biomass yield and plant height in Switchgrass. Bioenerg Res 8:307–324CrossRefGoogle Scholar
  70. Sheaffer CC, Orf JH, Devine TE, Jewett JG (2001) Yield and quality of forage soybean. J Agron 93:99–106CrossRefGoogle Scholar
  71. Shiringani AL, Friedt W (2011) QTL for fiber-related traits in grain × sweet sorghum as a tool for the enhancement of sorghum as a biomass crop. Theor Appl Genet 123:999–1011CrossRefPubMedGoogle Scholar
  72. Song Q, Hyten DL, Jia G, Quigley CV, Fickus EW, Nelson RL, Cregan PB (2013) Development and evaluation of SoySNP50 K, a high-density genotyping array for soybean. PLoS ONE 8:e54985CrossRefPubMedPubMedCentralGoogle Scholar
  73. Specht JE, Chase K, Macrander M, Graef GL, Chung J, Markwell JP, Germann M, Orf JH, Lark KG (2001) Soybean response to water: a QTL analysis of drought tolerance. Crop Sci 41:493–509CrossRefGoogle Scholar
  74. SPSS (2007) for Windows. Release 16.0. SPSS Inc, Chicago, ILGoogle Scholar
  75. Tanksley SD (1993) Mapping polygenes. Annu Rev Genet 27:205–233CrossRefPubMedGoogle Scholar
  76. Tian Z, WangX Lee R, Li Y, Specht JE, Nelson RL, McClean PE, Qiu L, Ma J (2010) Artificial selection for determinate growth habit in soybean. PNAS 107:8563–8568CrossRefPubMedPubMedCentralGoogle Scholar
  77. Voorrips RE (2002) MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered 93:77–78CrossRefPubMedGoogle Scholar
  78. Wang S, Basten CJ, and Zeng ZB (2011) Windows QTL cartographer 2.5. Department of Statistics, North Carolina State University, Raleigh, NCGoogle Scholar
  79. Wang XZ, Jiang GL, Green M, Scott RA, Hyten DL, Cregan PB (2014) QTL analysis of unsaturated fatty acids in a recombinant inbred population of soybean. Mol Breed 33:281–296CrossRefGoogle Scholar
  80. Wang T, Wang M, Hu S, Xia Y, Tong H, Pan Q, Xue J, Yan J, Li J, Yang X (2015) Genetic basis of maize kernel starch content revealed by high-density single nucleotide polymorphism markers in a recombinant inbred line population. BMC Plant Biol. doi: 10.1186/s12870-015-0675-2 Google Scholar
  81. Wolf S, Hematy K, Hofte H (2012) Growth control and cell wall signaling in plants. Annu Rev Plant Biol 63:381–407CrossRefPubMedGoogle Scholar
  82. Wu X, Tang D, Li M, Wang K, Cheng Z (2013) Loose plant architecture, an INDETERMINATE DOMAIN protein involved in shoot gravitropism, regulates plant architecture in rice. Plant Physiol 161:317–329CrossRefPubMedGoogle Scholar
  83. Xing GN, Zhou B, Wang YF, Zhao TJ, Yu DY, Chen SY, Gai JY (2012) Genetic components and major QTL confer resistance to bean pyralid (Lamprosema indicata Fabricius) under multiple environments in four RIL populations of soybean. Theor Appl Genet 125:859–875CrossRefPubMedGoogle Scholar
  84. Xiong G, Li R, Qian Q, Song X, Liu X, Yu Y, Zeng D, Wan J, Li J, Zhou Y (2010) The rice dynamin-related protein DRP2B mediates membrane trafficking, and thereby plays a critical role in secondary cell wall cellulose biosynthesis. Plant J 64:56–70PubMedGoogle Scholar
  85. Xu X, Zeng L, Tao Y, Vuong T, Wan J, Boerma R, Noe J, Li Z, Finnerty S, Pathan SM, Shannon JG, Nguyen HT (2013) Pinpointing genes underlying the quantitative trait loci for root-knot nematode resistance in palaeopolyploid soybean by whole genome resequencing. PNAS 110:13469–13474CrossRefPubMedPubMedCentralGoogle Scholar
  86. Yadav RS, Bidinger FR, Hash CT, Yadav YP, Yadav OP, Bhatnagar SK, Howarth CJ (2003) Mapping and characterization of QTL × E interactions for traits determining grain and stoker yield in pearl millet. Theor Appl Genet 106:512–520PubMedGoogle Scholar
  87. Zhang ZH, Li P, Wang LX, Hua ZL, Zhuc LH, Zhua YG (2004) Genetic dissection of the relationships of biomass production and partitioning with yield and yield related traits in rice. Plant Sci 167:1–8CrossRefGoogle Scholar
  88. Zhang D, Cheng H, Geng L, Kan G, Cui S, Meng Q, Gai J, Yu D (2009) Detection of quantitative trait loci for phosphorus deficiency tolerance at soybean seedling stage. Euphytica 167:313–322CrossRefGoogle Scholar
  89. Zhuang JY, Lin HX, Lu J, Qian HR, Hittalmani S, Huang N, Zheng KL (1997) Analysis of QTL × environment interaction for yield components and plant height in rice. Theor Appl Genet 95:799–808CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Sovetgul Asekova
    • 1
  • Krishnanand P. Kulkarni
    • 1
  • Gunvant Patil
    • 3
  • Minsu Kim
    • 1
  • Jong Tae Song
    • 1
  • Henry T. Nguyen
    • 3
  • J. Grover Shannon
    • 2
  • Jeong-Dong Lee
    • 1
    Email author
  1. 1.School of Applied BiosciencesKyungpook National UniversityDaeguRepublic of Korea
  2. 2.Division of Plant SciencesUniversity of Missouri- Delta CenterPortagevilleUSA
  3. 3.National Center for Soybean Biotechnology and Division of Plant SciencesUniversity of MissouriColumbiaUSA

Personalised recommendations