Molecular Breeding

, 36:83 | Cite as

Next-generation sequencing of amplicons is a rapid and reliable method for the detection of polymorphisms relevant for barley breeding

  • Leonie Fritsch
  • Raphael Soeur
  • Claudia Hansen
  • Rainer Fischer
  • Stefan Schillberg
  • Florian Schröper


Modern plant breeding is based on the detection of traits at the molecular level so that the selection process can be accelerated. Methods that allow the rapid and high-throughput analysis of such traits are therefore useful for plant breeders and farmers. We have shown that next-generation sequencing, applied to short PCR products spanning or flanking polymorphisms of interest in barley, can provide robust genotyping data that allow the rapid determination of genotype and zygosity. This method can be used to genotype large panels of plants because up to 80 million individual reads can be produced in one sequencing run, and samples from different lines and/or traits can be pooled. These findings are significant because plant breeders may need to screen large populations for multiple traits in parallel. Our next-generation sequencing method therefore provides a simple and inexpensive approach for the rapid and accurate genotyping of natural polymorphisms in barley, which can also be applied in many other economically relevant crop species.


Candidate gene Crops High-throughput genotyping Polymorphism QTL SNP 



We acknowledge Harold E. Bockelman from the United States Department of Agriculture (USDA) for providing the barley seeds. We acknowledge Cornelia Marthe and Dr. Jochen Kumlehn (IPK Gatersleben, Group Plant Reproductive Biology) for sharing their expertise on the crossbreeding of barley. We acknowledge Dr. Richard M Twyman for editing the manuscript. This work is supported by the BMBF (0316075B).

Supplementary material

11032_2016_507_MOESM1_ESM.docx (26 kb)
Supplementary material 1 (DOCX 25 kb)


  1. Bentley G, Higuchi R, Hoglund B, Goodridge D, Sayer D, Trachtenberg EA, Erlich HA (2009) High-resolution, high-throughput HLA genotyping by next-generation sequencing. Tissue Antigens 74:393–403. doi: 10.1111/j.1399-0039.2009.01345.x CrossRefPubMedPubMedCentralGoogle Scholar
  2. Borlaug NE (1983) Contributions of conventional plant breeding to food production. Science 219:689–693CrossRefPubMedGoogle Scholar
  3. Cai S, Yu G, Chen X, Huang Y, Jiang X, Zhang G, Jin X (2013) Grain protein content variation and its association analysis in barley. BMC Plant Biol 13:35. doi: 10.1186/1471-2229-13-35 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Campbell N, Harmon S, Narum S (2015) Genotyping-in-thousands by sequencing (GT-seq): a cost effective SNP genotyping method based on custom amplicon sequencing. Mol Ecol 15:855–867. doi: 10.1111/1755-0998.12357 CrossRefGoogle Scholar
  5. Choulet F et al (2010) Megabase level sequencing reveals contrasted organization and evolution patterns of the wheat gene and transposable element spaces. Plant Cell 22:1686–1701. doi: 10.1105/tpc.110.074187 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Deschamps S, Llaca V, May GD (2012) Genotyping-by-sequencing in plants. Biology 1:460–483. doi: 10.3390/biology1030460 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, Buckler ES, Mitchell SE (2011) A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS ONE 6:e19379. doi: 10.1371/journal.pone.0019379 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Food and Agriculture Organization of the United Nations (2014) Food and nutrition in numbers. Accessed 04 March 2015
  9. Fritsch L, Fischer R, Wambach C, Dudek M, Schillberg S, Schröper F (2015) Next-generation sequencing is a robust strategy for the high-throughput detection of zygosity in transgenic maize. Transgenic Res 4:615–623. doi: 10.1007/s11248-015-9864-x CrossRefGoogle Scholar
  10. Fu D et al (2005) Large deletions within the first intron in VRN-1 are associated with spring growth habit in barley and wheat. Mol Genet Genom 273:54–65CrossRefGoogle Scholar
  11. He J, Zhao X, Laroche A, Lu ZX, Liu H, Li Z (2014) Genotyping-by-sequencing (GBS), an ultimate marker-assisted selection (MAS) tool to accelerate plant breeding. Front Plant Sci 5:484. doi: 10.3389/fpls.2014.00484 CrossRefPubMedPubMedCentralGoogle Scholar
  12. Holcomb CL et al (2011) A multi-site study using high-resolution HLA genotyping by next generation sequencing. Tissue Antigens 77:206–217. doi: 10.1111/j.1399-0039.2010.01606.x CrossRefPubMedPubMedCentralGoogle Scholar
  13. ISAAA (2014) International service for the acquisition of agri-biotech applications. Accessed 27 June 2014
  14. Jonas E, de Koning DJ (2013) Does genomic selection have a future in plant breeding? Trends Biotechnol 31:497–504. doi: 10.1016/j.tibtech.2013.06.003 CrossRefPubMedGoogle Scholar
  15. Le T, Hidalgo Ashrafi E, Paul N (2009) Enhancing multiplex PCR efficiency using Hot Start dNTPs. Biotechniques 47:972–973CrossRefGoogle Scholar
  16. Life Technologies (2013) Ion PGM™ Template OT2 400 Kit, 3rd ednGoogle Scholar
  17. Life Technologies (2014) Trimming and filtering. Life-Technologies.—Filtering-and-Trimming. Accessed 27 Nov 2014
  18. Life Technologies (2015) Ion Torrent™ next-generation sequencing Accessed 16 May 2016
  19. Mascher M, Wu S, Amand PS, Stein N, Poland J (2013) Application of genotyping-by-sequencing on semiconductor sequencing platforms: a comparison of genetic and reference-based marker ordering in barley. PLoS ONE 8:e76925. doi: 10.1371/journal.pone.0076925 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Metzker ML (2010) Sequencing technologies—the next generation. Nat Rev Genet 11:31–46. doi: 10.1038/nrg2626 CrossRefPubMedGoogle Scholar
  21. Nakaya A, Isobe SN (2012) Will genomic selection be a practical method for plant breeding? Ann Bot 110:1303–1316. doi: 10.1093/aob/mcs109 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Reets T, Léon J (2004) Die Erhaltung der genetischen Diversität bei Getreide. Auswahl einer Gersten Core-Collection aufgrund geographischer Herkunft, Abstammung, Morphologie, Qualität, Anbaubedeutung und DNA Markeranalysen. In: Lehr- und Forschungsschwerpunkt „Umweltverträgliche und Standortgerechte Landwirtschaft”, vol 119. Rheinische Friedrich-Wilhelm-Universität BonnGoogle Scholar
  23. Roche (2011) Expand High Fidelity PCR System, 20th ednGoogle Scholar
  24. Schnable PS et al (2009) The B73 maize genome: complexity, diversity, and dynamics. Science 326:1112–1115. doi: 10.1126/science.1178534 CrossRefPubMedGoogle Scholar
  25. Sims D, Sudbery I, Ilott NE, Heger A, Ponting CP (2014) Sequencing depth and coverage: key considerations in genomic analyses. Nat Rev Genet 15:121–132. doi: 10.1038/nrg3642 CrossRefPubMedGoogle Scholar
  26. Szucs P et al (2007) Validation of the VRN-H2/VRN-H1 epistatic model in barley reveals that intron length variation in VRN-H1 may account for a continuum of vernalization sensitivity. Mol Genet Genomics 277:249–261CrossRefPubMedGoogle Scholar
  27. Teixeira RT, Fortes AM, Pinheiro C, Pereira H (2014) Comparison of good- and bad-quality cork: application of high-throughput sequencing of phellogenic tissue. J Exp Bot 65:4887–4905. doi: 10.1093/jxb/eru252 CrossRefPubMedGoogle Scholar
  28. Thermo Fisher Scientific (2014) Thermo Scientific™ ClaSeek™ Library Preparation Kit, Ion Torrent™ compatibleGoogle Scholar
  29. Uauy C, Distelfeld A, Fahima T, Blechl A, Dubcovsky J (2006) A NAC gene regulating senescence improves grain protein, zinc, and iron content in wheat. Science 314:1298–1301. doi: 10.1126/science.1133649 CrossRefPubMedPubMedCentralGoogle Scholar
  30. UN (2008) Population of the world, major development groups and major areas, 1950, 1975, 2009 and 2050, according to different variantsGoogle Scholar
  31. Varshney RK, Nayak SN, May GD, Jackson SA (2009) Next-generation sequencing technologies and their implications for crop genetics and breeding. Trends Biotechnol 27:522–530. doi: 10.1016/j.tibtech.2009.05.006 CrossRefPubMedGoogle Scholar
  32. von Zitzewitz J et al (2005) Molecular and structural characterization of barley vernalization genes. Plant Mol Biol 59:449–467. doi: 10.1007/s11103-005-0351-2 CrossRefGoogle Scholar
  33. Xu Y, Lu Y, Xie C, Gao S, Wan J, Prasanna BM (2012) Whole-genome strategies for marker-assisted plant breeding. Mol Breeding 29:833–854. doi: 10.1007/s11032-012-9699-6 CrossRefGoogle Scholar
  34. You FM et al (2011) Annotation-based genome-wide SNP discovery in the large and complex Aegilops tauschii genome using next-generation sequencing without a reference genome sequence. BMC Genomics 12:59. doi: 10.1186/1471-2164-12-59 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Leonie Fritsch
    • 1
  • Raphael Soeur
    • 1
  • Claudia Hansen
    • 1
  • Rainer Fischer
    • 1
    • 2
  • Stefan Schillberg
    • 1
    • 3
  • Florian Schröper
    • 1
  1. 1.Fraunhofer Institute for Molecular Biology and Applied Ecology IMEAachenGermany
  2. 2.Institute for Molecular BiotechnologyRWTH Aachen UniversityAachenGermany
  3. 3.Phytopathology Department, Institute for Phytopathology and Applied ZoologyJustus-Liebig University GiessenGiessenGermany

Personalised recommendations