Advertisement

Molecular Breeding

, 36:37 | Cite as

Mapping QTLs for morpho-agronomic traits in proso millet (Panicum miliaceum L.)

  • Santosh G. Rajput
  • Dipak K. Santra
  • James Schnable
Article

Abstract

Proso millet (Panicum miliaceum L.) is the cereal crop with the low water requirement and increasingly being used for human consumption. It is the most common rotational crop within wheat-based dryland production systems in the semiarid High Plains of the USA. However, there is no published genetic map for this species, which prevents the identification of quantitative trait loci (QTL). The objectives of the present study were (1) construction of a genetic linkage map and (2) identification of DNA markers linked to QTLs for morpho-agronomic traits. A total of 93 recombinant inbred lines derived from a single F1 (“Huntsman” × “Minsum”) were genotyped with GBS-SNP markers and phenotyped for nine morpho-agronomic traits in the field during 2013 and 2014 at Scottsbluff and Sidney, NE. IciMapping v.4.0.6.0 was used for constructing a genetic linkage map and mapping QTL. The RILs exhibited significant variation for a wide range of traits, and several traits showed evidence of genotype × environment interactions. A total of 833 GBS-SNP markers formed 18 major and 84 minor linkage groups, whereas 519 markers remained ungrouped. A total of 117 GBS-SNP markers were distributed on the 18 major linkage groups spanning a genome length of 2137 cM of proso millet with an average distance of 18 cM between markers. The length and number of markers in each of the 18 major linkage groups ranged from 54.6 to 236 cM and 4 to 12, respectively. A total of 18 QTLs for eight morpho-agronomic traits were detected on 14 linkage groups, each of which explained 13.2–34.7 % phenotypic variance. DNA markers flanking the QTLs were identified, which will aid in marker-assisted selection of these traits. To our knowledge, this is the first genetic linkage map and QTL mapping in proso millet, which will support further genetic analysis and genomics-assisted genetic improvement of this crop.

Keywords

Water use efficiency GBS-SNP Composite interval mapping Lodging Grain shattering Allotetraploid 

Notes

Acknowledgments

This research was partially funded by the “Nebraska Wheat Board,” “Cross Road Coop and Friends of Proso Millet Research Fund,” and multi-state Hatch project (NEB 43-119). The graduate research assistantship for S.G. Rajput was obtained from the Agronomy and Horticulture Department of the University of Nebraska-Lincoln. Partial funding for D.K. Santra’s salary was obtained from Hatch project (NEB-43-110). The authors would like to thank Drs. Stephen Baenziger, Alexander Pavlista, Brian Waters, Devin Rose and anonymous reviewers for reviewing the manuscript and scientific inputs.

Supplementary material

11032_2016_460_MOESM1_ESM.docx (18 kb)
Supplementary material 1 (DOCX 17 kb)
11032_2016_460_MOESM2_ESM.docx (15 kb)
Supplementary material 2 (DOCX 15 kb)

References

  1. Baltensperger DD (2002) Progress with proso, pearl and other millets. In: Janick J, Whipkey A (eds) Trends in new crops and new uses. ASHS Press, Alexandria, pp 100–103Google Scholar
  2. Baltensperger DD, Nelson LA, Frickel GE, Anderson RL (1995) Registration of ‘Huntsman’ proso millet. Crop Sci 35:941Google Scholar
  3. Borevitz JO, Chory J (2004) Genomics tools for QTL analysis and gene discovery. Curr Opin Plant Biol 7(2):132–136CrossRefPubMedGoogle Scholar
  4. Bradbury PJ, Zhang Z, Kroon DE, Casstevens TM, Ramdoss Y, Buckler ES (2007) TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics 23:2633–2635CrossRefPubMedGoogle Scholar
  5. Brim CA (1966) A modified pedigree method of selection in soybeans. Crop Sci 6:220CrossRefGoogle Scholar
  6. Brown PJ, Upadyayula N, Mahone GS, Tian F, Bradbury PJ, Myles S, Holland JB, Flint-Garcia S, McMullen MD, Bucker ES, Rocheford TR (2011) Distinct genetic architectures for male and female inflorescence traits of maize. PLoS Genet 7:e1002383CrossRefPubMedPubMedCentralGoogle Scholar
  7. Byers RL, Harker DB, Yourstone SM, Maughan PJ, Udall JA (2012) Development and mapping of SNP assays in allotetraploid cotton. Theor Appl Genet 124:1201–1214CrossRefPubMedPubMedCentralGoogle Scholar
  8. Carlier JD, Reis A, Duval MF, Coppens D’Eeckenbrugge G, Leitão M (2004) Genetic maps of RAPD, AFLP and ISSR markers in Ananas bracteatus and A. comosus using the pseudo-testcross strategy. Plant Breed 123:186–192CrossRefGoogle Scholar
  9. Churchill GA, Doerge RW (1994) Empirical threshold values for quantitative trait mapping. Genetics 138:963–971PubMedPubMedCentralGoogle Scholar
  10. Collard BCY, Jahufer MZZ, Brouwer JB, Pang ECK (2005) An introduction to markers, quantitative trait loci (QTL) mapping and marker-assisted selection for crop improvement: the basic concepts. Euphytica 142:169–196CrossRefGoogle Scholar
  11. De la Rosa R, Angiolillo A, Guerrero C, Pellegrini M, Rallo L, Besnard G, Berville A, Martin A, Baldoni L (2003) A first linkage map of olive (Olea europaea L.) cultivars using RAPD, AFLP, RFLP and SSR markers. Theor Appl Genet 106:1273–1282PubMedGoogle Scholar
  12. Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure from small amount of fresh leaf tissue. Phytochem Bull 19:11–15Google Scholar
  13. Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, Buckler ES, Mitchell SE (2011) A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS ONE 6(5):e19379CrossRefPubMedPubMedCentralGoogle Scholar
  14. Graybosch RA, Baltensperger DD (2009) Evaluation of the waxy endosperm trait in proso millet (Panicum miliaceum). Plant Breed 128:70–73CrossRefGoogle Scholar
  15. Guo H, Ding W, Chen J, Chen X, Zheng Y, Wang Z et al (2014) Genetic linkage map construction and QTL mapping of salt tolerance traits in zoysiagrass (Zoysia japonica). PLoS ONE 9(9):e107249. doi: 10.1371/journal.pone.0107249 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Hamoud MA, Haroun SA, MacLeod RD, Richards AJ (1994) Cytological relationships of selected species of Panicum L. Biol Plant 36:37–45CrossRefGoogle Scholar
  17. Han Y, Korban SS (2010) Strategies for map-based cloning in apple. Crit Rev Plant Sci 29:264–284CrossRefGoogle Scholar
  18. Han L, Chen J, Mac ES, Liu Y, Zhu M, Yuyama N, Jordan DR, Cai H (2015) Fine mapping of qGW1, a major QTL for grain weight in sorghum. Theor Appl Genet 128:1813–1825CrossRefPubMedGoogle Scholar
  19. Hinze G, Mann HO, Langin EJ, Fisher A (1978) Registration of ‘Cope’ proso millet. Crop Sci 18:1093CrossRefGoogle Scholar
  20. Hu X, Wang J, Lu P, Zhang H (2009) Assessment of genetic diversity in broomcorn millet Panicum miliaceum L.) using SSR markers. J Genet Genomics 36(8):491–500CrossRefPubMedGoogle Scholar
  21. Huang Y-F, Poland JA, Wight CP, Jackson EW, Tinker NA (2014) Using genotyping-by-sequencing (GBS) for genomic discovery in cultivated oat. PLoS ONE 9(7):e102448. doi: 10.1371/journal.pone.0102448 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Hunt HV, Campana MG, Lawes MC, Park YJ, Bower MA, Howe CJ, Jones MK (2011) Genetic diversity and phylogeography of broomcorn millet (Panicum miliaceum L.) across Eurasia. Mol Ecol 20:4756–4771CrossRefPubMedPubMedCentralGoogle Scholar
  23. Hunt HV, Badakshi F, Romanova O, Howe CJ, Jones MK, Heslop-Harrison JSP (2014) Reticulate evolution in Panicum (Poaceae): the origin of tetraploid broomcorn millet, P. miliaceum. J Exp Bot 65(12):3165–3175CrossRefPubMedPubMedCentralGoogle Scholar
  24. Ipek M, Ipek AS, Almquist G, Simon PW (2005) Demonstration of linkage and development of the first low-density genetic map of garlic, based on AFLP markers. Theor Appl Genet 110:228–236CrossRefPubMedGoogle Scholar
  25. Ji H-S, Chu S-H, Jiang W, Cho Y-I, Hahn J-H, Eun M-Y, McCouch SR, Koh H-J (2006) Characterization and mapping of a shattering mutant in rice that corresponds to a block of domestication genes. Genetics 173:995–1005CrossRefPubMedPubMedCentralGoogle Scholar
  26. Jun T, Freewalt K, Michel AP, Mian MAR (2014) Identification of novel QTL for leaf traits in soybean. Plant Breed 133:61–66CrossRefGoogle Scholar
  27. Kesseli RV, Paran I, Michelmore RW (1994) Analysis of a detailed genetic linkage map of Lactuca sativa (lettuce) constructed from RFLP and RAPD markers. Genetics 136:1435–1446PubMedPubMedCentralGoogle Scholar
  28. Kim KS, Diers B, Hyten D, Mian MR, Shannon JG, Nelson R (2012) Identification of positive yield QTL alleles from exotic soybean germplasm in two backcross populations. Theor App Genet 125:1353–1369CrossRefGoogle Scholar
  29. Kumar N, Kulwal PL, Gaur A, Tyagi AK, Khurana JP, Khurana P, Balyan HS, Gupta PK (2006) QTL analysis for grain weight in common wheat. Euphytica 151:135–144CrossRefGoogle Scholar
  30. Li ML, Yuyama N, Hirata M, Han JG, Wang YW, Cai HW (2009) Construction of a high-density SSR marker-based linkage map of zoysiagrass (Zoysia japonica Steud.). Euphytica 170(3):327–338CrossRefGoogle Scholar
  31. Li M, Yuyama N, Hirata M, Wang Y, Han J, Cai H (2010) An integrated SSR based linkage map for Zoysia matrella L. and Z. japonica Steud. Mol Breed 26:467–476CrossRefGoogle Scholar
  32. Li H, Vikram P, Singh RP, Kilian A, Carling J, Song J, Burgueno-Ferreira JA, Bhavani S, Huerta-Espino J, Payne T, Sehgal D, Wenzl P, Singh S (2015) A high density GBS map of bread wheat and its application for dissecting complex disease resistance traits. BMC Genom 16:216CrossRefGoogle Scholar
  33. Lin M, Cai S, Wang S, Liu S, Zhang G, Bai G (2015) Genotyping-by-sequencing (GBS) identified SNP tightly linked to QTL for pre-harvest sprouting resistance. Theor Appl Genet 128:1385–1395CrossRefPubMedGoogle Scholar
  34. Lu H, Zhang J, Liu K (2009) Earliest domestication of common millet (Panicum miliaceum) in East Asia extended to 10,000 years ago. Proc Natl Acad Sci 106:7367–7372CrossRefPubMedPubMedCentralGoogle Scholar
  35. Lu F, Lipka AE, Glaubitz J, Elshire R, Cherney JH, Casler MD et al (2013) Switchgrass genomic diversity, ploidy, and evolution: novel insights from a network-based SNP discovery protocol. PLoS Genet 9(1):e1003215CrossRefPubMedPubMedCentralGoogle Scholar
  36. Lyon DJ, Burgener PA, DeBoer KL, Harveson RM, Hein GL, Hergert GW, Holman TL, Nelson LA, Johnson JJ, Nleya T, Krall JM, Nielsen DC, Vigil MF (2008) Producing and marketing of proso millet in Great Plains. http://ianrpubs.unl.edu/live/ec137/build/ec137.pdf
  37. Ma X-F, Jensen E, Alexandrov N, Troukhan M, Zhang L, Thomas-Jones S et al (2012) High resolution genetic mapping by genome sequencing reveals genome duplication and tetraploid genetic structure of the diploid Miscanthus sinensis. PLoS ONE 7(3):e33821. doi: 10.1371/journal.pone.0033821 CrossRefPubMedPubMedCentralGoogle Scholar
  38. Mammadov J, Aggarwal R, Buyyarapu R, Kumpatla S (2012) SNP markers and their impact on plant breeding. Int J Plant Genomics. Article ID 728398. doi: 10.1155/2012/728398
  39. McIntosh RA, Yamazaki Y, Dubcovskey J, Rogers J, Morris C, Apples R, Xia XC (2013) Catalogue of gene symbols for wheat. http://wheat.pw.usda.gov/GG2/Triticum/wgc/2013/GeneCatalogueIntroduction.pdf
  40. Miles CM, Wayne ML (2008) Quantitative trait locus (QTL) analysis. Nat Educ 1(1). http://www.nature.com/scitable/topicpage/Quantitative-Trait-Loci-QTL-Analysis-53904
  41. Moumouni KH, Kountche BA, Jean M, Hash CT, Vigouroux Y, Haussmann BIG, Belzile F (2015) Construction of a genetic map for pearl millet, Pennisetum glaucum (L.) R. Br., using a genotyping-by-sequencing (GBS) approach. Mol Breed 35:5CrossRefGoogle Scholar
  42. Nelson LA (1976) Registration of ‘Dawn’ proso millet. Crop Sci 16:739CrossRefGoogle Scholar
  43. Nelson LA (1984) Registration of ‘Rise’ proso millet. Crop Sci 24:383CrossRefGoogle Scholar
  44. Paillard S, Schnurbusch T, Winzeler M, Messmer M, Sourdille P, Abderhalden O, Keller B, Schachermayr G (2003) An integrative genetic linkage map of winter wheat (Triticum aestivum L.). Theor Appl Genet 107:1235–1242CrossRefPubMedGoogle Scholar
  45. Pask AJD, Pietragalla J, Mullan DM, Reynolds MP (2012) Physiological breeding II: a field guide to wheat phenotyping. CIMMYT, MexicoGoogle Scholar
  46. Pearl HM, Nagai C, Moore PH, Steiger DL, Osgood RV, Ming R (2004) Construction of a genetic map for arabica coffee. Theor Appl Genet 108:829–835CrossRefPubMedGoogle Scholar
  47. Pedraza-Garcia F, Specht JE, Dweikat I (2010) A new PCR based linkage map in pearl millet. Crop Sci 50:1754–1760CrossRefGoogle Scholar
  48. Peters JL, Cnudde F, Gerats T (2003) Forward genetics and map-based cloning approaches. Trends Plant Sci 8:484–491CrossRefPubMedGoogle Scholar
  49. Piepho HP, Büchse A, Emrich K (2003) A hitchhiker’s guide to mixed models for randomized experiments. J Agron Crop Sci 189:310–322CrossRefGoogle Scholar
  50. Prasad M, Kumar N, Kulwal PL, Röder MS, Balyan HS, Dhaliwal HS, Gupta PK (2003) QTL analysis for grain protein content using SSR markers and validation studies using NILs in bread wheat. Theor Appl Genet 106:659–667PubMedGoogle Scholar
  51. Rajput SG, Harveson T, Santra DK (2014) Development and characterization of SSR markers in proso millet (Panicum miliaceum L.) based on Switch grass Genomics. Am J Plant Sci 5:175–186CrossRefGoogle Scholar
  52. Rajput SG, Santra DK (2016) Evaluation of genetic diversity of proso millet (Panicum miliaceum) germplasm available in the USA using SSR markers. Crop Sci. doi: 10.2135/cropsci2015.10.0644
  53. Ribaut JM, Betran J (1999) Single large-scale marker-assisted selection (SLS-MAS). Mol Breed 5:531–541CrossRefGoogle Scholar
  54. Robinson RG (1980) Registration of ‘Minsum’ proso millet. Crop Sci 20:550CrossRefGoogle Scholar
  55. Russell J, Hackett C, Hedley P, Liu H, Milne L, Bayer M, Marshall D, Jorgensen L, Gordon S, Brennan R (2014) The use of genotyping by sequencing in blackcurrant (Ribes nigrum): developing high-resolution linkage maps in species without reference genome sequences. Mol Breed 33:835–849CrossRefGoogle Scholar
  56. Salvi S, Tuberosa R (2015) The crop QTLome comes of age. Curr Opin Biotechnol 32:179–185CrossRefPubMedGoogle Scholar
  57. Salvi S, Tuberosa R, Chiapparino E, Maccaferri M, Veillet S, van Beuningen L, Isaac P, Edwards K, Phillips RL (2002) Toward positional cloning of Vgt1, a QTL controlling the transition from the vegetative to the reproductive phase in maize. Plant Mol Biol 48(5–6):601–613CrossRefPubMedGoogle Scholar
  58. Santra DK (2013) Proso millet varieties for western Nebraska western Nebraska. University of Nebraska-Lincoln NebGuide. G2219Google Scholar
  59. Santra DK, Rose D (2013) Alternative uses of proso millet. University of Nebraska-Lincoln Neb Guide G2218Google Scholar
  60. Santra DK, Heyduck RF, Baltensperger DD, Graybosch RA, Nelson LA, Frickel G, Nielsen E (2015) Registration of ‘Plateau’ waxy (amylose-free) proso millet. J Plant Regist 9(1):41–43CrossRefGoogle Scholar
  61. Steele KA, Price AH, Shashidhar HE, Witcombe JR (2006) Marker-assisted selection to introgress rice QTLs controlling root traits into an Indian upland rice variety. Theor Appl Genet 112:208–221CrossRefPubMedGoogle Scholar
  62. Supriya A, Senthilvel S, Nepolean T, Eshwar K, Rajaram V, Shaw R, Hash CT, Kilian A, Yadav RC, Narasu ML (2011) Development of a molecular linkage map of pearl millet integrating DArT and SSR markers. Theor Appl Genet 123:239–250. doi: 10.1007/s00122-011-1580-1 CrossRefPubMedGoogle Scholar
  63. Tanksley SD (1993) Mapping polygenes. Annu Rev Genet 27:205–233CrossRefPubMedGoogle Scholar
  64. Wang J, Li H, Zhang L, Meng L (2014) Users’ manual of QTL IciMapping. The Quantitative Genetics Group, Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, and Genetic Resources Program, International Maize and Wheat Improvement Center (CIMMYT), MexicoGoogle Scholar
  65. Ye C, Argayoso MA, Redoña ED et al (2012) Mapping QTL for heat tolerance at flowering stage in rice using SNP markers. Plant Breed 131:33–41CrossRefGoogle Scholar
  66. Yu M, Chen GY, Pu ZE, Zhang LQ, Liu DC, Lan XJ, Wei YM, Zheng YL (2015) Quantitative trait locus mapping for growth duration and its timing components in wheat. Mol Breed 35:44. doi: 10.1007/s11032-015-0201-0 CrossRefGoogle Scholar
  67. Zhu R, Gao Y, Zhang Q (2014) Quantitative trait locus mapping of floral and related traits using an F2 population of Aquilegia. Plant Breed 133:153–161CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Santosh G. Rajput
    • 1
    • 2
  • Dipak K. Santra
    • 1
  • James Schnable
    • 3
  1. 1.Panhandle Research and Extension CenterUniversity of Nebraska-LincolnScottsbluffUSA
  2. 2.2073 Dryland Genetics LLC, Roy J Carver Co-LabIowa State UniversityAmesUSA
  3. 3.Beadle Center E207University of Nebraska-LincolnLincolnUSA

Personalised recommendations