Molecular Breeding

, 36:27 | Cite as

Genetic mapping and QTL analysis in European hazelnut (Corylus avellana L.)

  • Chiara Beltramo
  • Nadia Valentini
  • Ezio Portis
  • Daniela Torello Marinoni
  • Paolo Boccacci
  • Maria Angelica Sandoval Prando
  • Roberto Botta
Article

Abstract

The European hazelnut (Corylus avellana L.) is the most economically important nut species in the Betulaceae family. Despite the need for new improved hazelnut cultivars, few breeding programs are carried out because of the large plant size, the long lifecycle of the plant, and the expense and time required. To date, there are no reports of maps with quantitative trait loci (QTL) in hazelnut. Our objective in the present study was to identify QTL associated with vegetative traits to allow marker-assisted selection (MAS). An F1 progeny (275 plants) of Tonda Gentile delle Langhe × Merveille de Bollwiller obtained in 2009 was used to develop a QTL linkage map for vigour, sucker habit, and time of bud burst, after three years of observations. A set of 163 plants were analysed with 152 microsatellite markers. A map of 11 linkage groups was obtained, covering 663.1 cM, and 15 QTLs were identified and mapped for the traits examined. Of them, 10 were ‘major’ QTL, including a stably expressed region on LG_02 for leaf bud burst. At least one major QTL for each year underlies the variation in each trait and a clustering of QTL for trunk circumference and suckers/trunk circumference ratio with high inter-trait correlations was observed on LG_05, suggesting a single pleiotropic locus. This research represents an initial step in the future identification of chromosomal regions carrying genes of interest, important for breeding programs and MAS.

Keywords

SSR MAS Vegetative traits Leaf bud burst Sucker habit Vigour 

Notes

Acknowledgments

The research was carried out in collaboration with Ferrero Hazelnut Company that funded a research grant. The research was also supported by Fondazione CRT and Fondazione ISI-Lagrange project.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

11032_2016_450_MOESM1_ESM.docx (23 kb)
Supplementary material 1 (DOCX 22 kb)

References

  1. Aranzana MJ, Pineda A, Cosson P, Dirlewanger E, Ascasibar J, Cipriani G, Ryder CD, Testolin R, Abbott A, King GJ, Iezzoni AF, Arús P (2003) A set of simple-sequence repeat (SSR) markers covering the Prunus genome. Theor Appl Genet 106:819–825PubMedGoogle Scholar
  2. Barchi L, Lanteri S, Portis E, Valè G, Volante A, Pulcini L, Ciriaci T, Acciarri N, Barbierato V, Toppino L, Rotino GL (2012) A RAD tag derived marker based eggplant linkage map and the location of QTLs determining anthocyanin pigmentation. PLoS One 7(8):e43740PubMedPubMedCentralCrossRefGoogle Scholar
  3. Bassil NV, Botta R, Mehlenbacher SA (2005a) Microsatellite markers in hazelnut: isolation, characterization, and cross-species amplification. J Am Soc Hort Sci 130:543–549Google Scholar
  4. Bassil NV, Botta R, Mehlenbacher SA (2005b) Additional microsatellite markers of the European hazelnut. Acta Hort 686:105–110CrossRefGoogle Scholar
  5. Beavis WD (1995) The power and deceit of QTL experiments: lessons from comparative QTL studies. In: Wilkinson DB (ed) Proceedings of the 49th annual Corn and Sorghum Industry Research conference. ASTA, Washington DC, pp 250–266Google Scholar
  6. Bielenberg DG, Rauh B, Fan S, Gasic K, Abbott AG, Reighard GL, Okie WR, Wells CE (2015) Genotyping by sequencing for SNP-based linkage map construction and QTL analysis of chilling requirement and bloom date in peach [Prunus persica (L.) Batsch]. PLoS One 10(10):e0139406PubMedPubMedCentralCrossRefGoogle Scholar
  7. Billington HL, Pelham J (1991) Genetic variation in the date of budburst in Scottish birch populations: implications for climate change. Funct Ecol 5:403–409CrossRefGoogle Scholar
  8. Boccacci P, Akkak A, Bassil NV, Mehlenbacher SA, Botta R (2005) Characterization and evaluation of microsatellite loci in European hazelnut (Corylus avellana L.) and their transferability to other Corylus species. Mol Ecol Notes 5:934–937CrossRefGoogle Scholar
  9. Boccacci P, Beltramo C, Sandoval Prando MA, Lembo A, Sartor C, Mehlenbacher SA, Botta R, Torello Marinoni D (2015) In silico mining, characterization and cross-species transferability of EST-SSR markers for European hazelnut (Corylus avellana L.). Mol Breeding 35:21. doi:10.1007/s11032-015-0195-7 CrossRefGoogle Scholar
  10. Bowers JE, Bachlava E, Brunick RL, Rieseberg LH, Knapp SJ, Burke JM (2012) Development of a 10,000 locus genetic map of the sunflower genome based on multiple crosses. G3 (Bethesda) 2(7):721–729CrossRefGoogle Scholar
  11. Bradshaw HD, Stettler RF (1995) Molecular genetics of growth and development in Populus. IV. Mapping QTLs with large effects on growth, form, and phenology traits in a forest tree. Genetics 139:963–973PubMedGoogle Scholar
  12. Bradshaw H, Villar M, Watson B, Otto K, Stewart S, Stettler R (1994) Molecular genetics of growth and development in Populus. 3. A genetic-linkage map of a hybrid poplar composed of RFLP, STS and RAPD markers. Theor Appl Genet 89(2–3):167–178PubMedGoogle Scholar
  13. Bundock PC, Potts BM, Vaillancourt RE (2008) Detection and stability of quantitative trait loci (QTL) in Eucalyptus globulus. Tree Genet Genomes 4:85–95CrossRefGoogle Scholar
  14. Bus VGM, Bassett HCM, Bowatte D, Chagné D, Ranatunga C, Ulluwishewa D, Wiedow C, Gardiner S (2010) Genome mapping of an apple scab, a powdery mildew and a woolly apple aphid resistance gene from open-pollinated mildew immune selection. Tree Genet Genomes 6:477–487CrossRefGoogle Scholar
  15. Byrne M, Murrell LC, Owen JV, Kriedemann P, Williams ER, Moran GF (1997) Identification and mode of action of quantitative trait affecting seedling height and leaf area in Eucalyptus nitens. Theor Appl Genet 94:674–681CrossRefGoogle Scholar
  16. Campoy JA, Ruiz D, Egea J, Reesw DJG, Celton JM, Martínez-Gómez P (2011) Inheritance of flowering time in apricot (Prunus armeniaca L.) and analysis of linked quantitative trait loci (QTLs) using simple sequence repeat (SSR) markers. Plant Mol Biol Rep 29:404–410CrossRefGoogle Scholar
  17. Carter AH, Garland-Campbell K, Kidwell KK (2011) Genetic mapping of quantitative trait loci associated with important agronomic traits in the spring wheat (Triticum aestivum L.) cross ‘Louise’ × ‘Penawawa’. Crop Sci 51:84–95CrossRefGoogle Scholar
  18. Casasoli M, Pot D, Plomion C, Monteverdi MC, Barreneche T, Lauteri M, Villani F (2004) Identification of QTLs affecting adaptive traits in Castanea sativa Mill. Plant Cell Environ 27:1088–1101CrossRefGoogle Scholar
  19. Casasoli M, Derory J, Morera-Dutrey C, Brendel O, Porth I, Guehl JM, Villani F, Kremer A (2006) Comparison of quantitative trait Loci for adaptive traits between oak and chestnut based on an expressed sequence tag consensus map. Genetics 172:533–546PubMedPubMedCentralCrossRefGoogle Scholar
  20. Castède S, Campoy JA, Le Dantec L, Quero-García J, Barreneche T, Wenden B, Dirlewanger E (2015) Mapping of candidate genes involved in bud dormancy and flowering time in sweet cherry (Prunus avium). PLoS One 10(11):e0143250PubMedPubMedCentralCrossRefGoogle Scholar
  21. Cervera MT, Storme V, Ivens B, Gusmao J, Liu BH, Hostyn V, Slycken JV, Montagu MV, Boerjan W (2001) Dense genetic linkage maps of three Populus species (Populus deltoides, P. nigra and P. trichocarpa) based on AFLP and microsatellite markers. Genetics 158:787–809PubMedPubMedCentralGoogle Scholar
  22. Chagne D, Krieger C, Rassam M, Sullivan M, Fraser J, André C, Pindo M, Troggio M, Gardiner SE, Henry RA, Allan AC, McGhie TK, Laing WA (2012) QTL and candidate gene mapping for polyphenolic composition in apple fruit. BMC Plant Biol 12:12PubMedPubMedCentralCrossRefGoogle Scholar
  23. Chen H, Mehlenbacher SA, Smith DC (2005) AFLP markers linked to eastern filbert blight resistance from OSU 408.040 hazelnut. J Am Soc Hort Sci 130(3):412–417Google Scholar
  24. Chen J, Wang N, Fang LC, Liang ZC, Li SH, Wu BH (2015) Construction of a high-density genetic map and QTLs mapping for sugars and acids in grape berries. BMC Plant Biol 15:28PubMedPubMedCentralCrossRefGoogle Scholar
  25. Churchill GA, Doerge RW (1994) Empirical threshold values for quantitative trait mapping. Genetics 138:963–971PubMedPubMedCentralGoogle Scholar
  26. Colburn BC, Mehlenbacher SA, Sathuvalli VR, Smith DC (2015) Eastern filbert blight resistance in hazelnut accessions ‘Culplá’, ‘Crvenje’, and OSU 495072. J Am Soc Hort Sci 140(2):191–200Google Scholar
  27. Collard BCY, Jahufer MZZ, Brouwer JB, Pang ECK (2005) An introduction to markers, quantitative trait loci (QTL) mapping and marker-assisted selection for crop improvement: the basic concepts. Euphytica 142:169–196CrossRefGoogle Scholar
  28. Cooke JK, Eriksson ME, Junttila O (2012) The dynamic nature of bud dormancy in trees: environmental control and molecular mechanisms. Plant Cell Environ 35:1707–1728PubMedCrossRefGoogle Scholar
  29. Dakin EE, Avise JC (2004) Microsatellite null alleles in parentage analysis. Heredity 93:504–509PubMedCrossRefGoogle Scholar
  30. De Vicente MC, Tanksley SD (1993) QTL analysis of transgressive segregation in an interspecific tomato cross. Genetics 134:585–596Google Scholar
  31. Dicenta FJ, Garcia E, Carbonell EA (1993) Heritability of flowering, productivity and maturity in almond. J Hort Sci 68:113–120Google Scholar
  32. Doligez A, Adam-Blondon AF, Cipriani G, Di Gaspero G, Laucou V, Merdinoglu D, Meredith CP, Riaz S, Roux C, This P (2006) An integrated map of grapevine based on five mapping populations. Theor Appl Genet 113:369–382PubMedCrossRefGoogle Scholar
  33. Doucleff M, Jin Y, Gao F, Riaz S, Krivanek AF, Walker MA (2004) A genetic linkage map of grape, utilizing Vitis rupestris and Vitis arizonica. Theor Appl Genet 109:1178–1187PubMedCrossRefGoogle Scholar
  34. Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19:11–15Google Scholar
  35. Du Q, Gong C, Wang Q, Zhou D, Yang H, Pan W, Li B, Zhang D (2015) Genetic architecture of growth traits in Populus revealed by integrated quantitative trait locus (QTL) analysis and association studies. New Phytol. doi:10.1111/nph.13695 Google Scholar
  36. Emebiri LC, Devey ME, Matheson AC, Slee MU (1998) Age-related changes in the expression of QTLs for growth in radiata pine seedlings. Theor Appl Genet 97:1053–1061CrossRefGoogle Scholar
  37. FAOSTAT (2015) Agriculture data. http://faostat3.fao.org/home/index.html. Accessed 25 November 2015
  38. Farré A, Lacasa Benito I, Cistué L, de Jong JH, Romagosa I, Jansen J (2011) Linkage map construction involving a reciprocal translocation. Theor Appl Genet 122:1029–1037PubMedPubMedCentralCrossRefGoogle Scholar
  39. Fishman L, Kelly AJ, Morgan E, Willis JH (2001) A genetic map in the Mimulus guttatus species complex reveals transmission ratio distortion due to heterospecific interactions. Genetics 159:1701–1716PubMedPubMedCentralGoogle Scholar
  40. Francia E, Tacconi G, Crosatti C, Barabaschi D, Bulgarelli D, Dall’Aglio E, Valè G (2005) Marker-assisted selection in crop plants. Plant Cell Tissue Organ Cult 82:317–342CrossRefGoogle Scholar
  41. Frewen BE, Chen THH, Howe GT, Davis J, Rohde A, Boerjan W, Bradshaw HD (2000) Quantitative trait loci and candidate gene mapping of bud set and bud flush in Populus. Genetics 154:837–845PubMedPubMedCentralGoogle Scholar
  42. Germain E, Sarraquigne JP (2004) Le noisetier. Ctifl, INRA, ParisGoogle Scholar
  43. Gürcan K, Mehlenbacher SA (2010a) Development of microsatellite loci for European hazelnut (Corylus avellana L.) from ISSR fragments. Mol Breed 26:551–559CrossRefGoogle Scholar
  44. Gürcan K, Mehlenbacher SA (2010b) Transferability of microsatellite markers in the Betulaceae. J Am Soc Hort Sci 135(2):159–173Google Scholar
  45. Gürcan K, Mehlenbacher SA, Botta R, Boccacci P (2010) Development, characterization, segregation, and mapping of microsatellite markers for European hazelnut (Corylus avellana L.) from enriched genomic libraries and usefulness in genetic diversity studies. Tree Genet Genomes 6:513–531CrossRefGoogle Scholar
  46. Hackett CA, Broadfoot LB (2003) Effects of genotyping errors, missing values and segregation distortion in molecular marker data on the construction of linkage maps. Heredity 90:33–38PubMedCrossRefGoogle Scholar
  47. Harel-Beja R, Sherman A, Rubinstein M, Eshed R, Bar-Ya’akov I, Trainin T, Ophir R, Holland D (2015) A novel genetic map of pomegranate based on transcript markers enriched with QTLs for fruit quality traits. Tree Genet Genomes 11:109CrossRefGoogle Scholar
  48. Howe GT, Aitken SN, Neale DB, Jermstad KD, Wheeler NC, Chen TH (2003) From genotype to phenotype: unraveling the complexities of cold adaptation in forest trees. Can J Bot 81:1247–1266CrossRefGoogle Scholar
  49. Huang YF, Poland JA, Wight CP, Jackson EW, Tinker NA (2014) Using genotyping-by-sequencing (GBS) for genomic discovery in cultivated oat. PLoS One 9:e102448PubMedPubMedCentralCrossRefGoogle Scholar
  50. IPGRI (Bioversity International), FAO and CIHEAM (2008) Descriptors for hazelnut (Corylus avellana L.). Bioversity International, Rome, Italy; Food and Agriculture Organization of the United Nations, Rome, Italy; International Centre for Advanced Mediterranean Agronomic Studies, Zaragoza, Spain. http://www.bioversityinternational.org
  51. Ives C, Sathuvalli VR, Colburn BC, Mehlenbacher SA (2014) Mapping the incompatibility and style color loci in two hazelnut progenies. HortSci 49(3):250–253Google Scholar
  52. Jansen RC, Stam P (1994) High-resolution of quantitative traits into multiple loci via interval mapping. Genetics 136:1447–1455PubMedPubMedCentralGoogle Scholar
  53. Jenczewski E, Gherardi M, Bonnin I, Prosperi JM, Olivieri I, Huguet T (1997) Insight on segregation distortions in two intraspecific crosses between annual species of Medicago (Leguminosae). Theor Appl Genet 94:682–691CrossRefGoogle Scholar
  54. Jermstad KD, Bassoni DL, Jech KS, Wheeler NC, Neale DB (2001) Mapping of quantitative trait loci controlling adaptive traits in coastal Douglas-fir. I. Timing of vegetative bud flush. Theor Appl Genet 102:1142–1151CrossRefGoogle Scholar
  55. Jermstad KD, Bassoni DL, Jech KS, Ritchie GA, Wheeler NC, Neale DB (2003) Mapping of quantitative trait loci controlling adaptive traits in coastal Douglas fir. III. Quantitative trait loci-by-environment interactions. Genetics 165:1489–1506PubMedPubMedCentralGoogle Scholar
  56. Jeuken M, van Wijk R, Peleman J, Lindhout P (2001) An integrated interspecific AFLP map of lettuce (Lactuca) based on two L-sativa x L-saligna F-2 populations. Theor Appl Genet 103:638–647CrossRefGoogle Scholar
  57. Johansson T, Le Quéré A, Ahren D, Söderström B, Erlandsson R, Lundeberg J, Uhlén M, Tunlid A (2004) Transcriptional responses of Paxillus involutus and Betula pendula during formation of ectomycorrhizal root tissue. Mol Plant Microbe Interact 17(2):202–215PubMedCrossRefGoogle Scholar
  58. Jones ES, Sullivan H, Bhattramakki D, Smith JS (2007) A comparison of simple sequence repeat and single nucleotide polymorphism marker technologies for the genotypic analysis of maize (Zea mays L.). Theor Appl Genet 115:361–371PubMedCrossRefGoogle Scholar
  59. Jordan DR, Casu RE, Besse P, Carroll BC, Berding N, McIntyre CL (2004) Markers associated with stalk number and suckering in sugarcane colocate with tillering and rhizomatousness QTLs in sorghum. Genome 47:988–993PubMedCrossRefGoogle Scholar
  60. Jorge V, Dowkiw A, Faivre-Rampant P, Bastien C (2005) Genetic architecture of qualitative and quantitative Melampsora larici-populina leaf rust resistance in hybrid poplar: genetic mapping and QTL detection. New Phytol 167:113–127PubMedCrossRefGoogle Scholar
  61. Julio E, Denoyes-Rothan B, Verrier JL, Dorlhac de Borne F (2006) Detection of QTLs linked to leaf and smoke properties in Nicotiana tabacum based on a study of 114 recombinant inbred lines. Mol Breed 18:69–91CrossRefGoogle Scholar
  62. Kasapligil B (1972) A bibliography on Corylus (Betulaceae) with annotations. Ann Rep North Nut Grow Assoc 63:107–162Google Scholar
  63. Kosambi D (1944) The estimation of map distances from recombination values. Ann Eugen 12:172–175CrossRefGoogle Scholar
  64. Kremer A (1992) Prediction of age-age correlations of total height based on serial correlations between height increments in maritime pine (Pinus pinaster Ait.). Theor Appl Genet 85:152–158PubMedGoogle Scholar
  65. Kuang H, Richardson T, Carson S, Wilcox P, Bongarten B (1999) Genetic analysis of inbreeding depression in plus tree 850.55 of Pinus radiata D. Don I. Genetic map with distorted markers. Theor Appl Genet 98:697–703CrossRefGoogle Scholar
  66. Kubisiak TL, Nelson CD, Staton ME, Zhebentyayeva T, Smith C, Olukolu BA, Fang GC, Hebard FV, Anagnostakis S, Wheeler N, Sisco PH, Abbott AG, Sederoff RR (2013) A transcriptome-based genetic map of Chinese chestnut (Castanea mollissima) and identification of regions of segmental homology with peach (Prunus persica). Tree Genet Genomes 9(2):557–571CrossRefGoogle Scholar
  67. Lander ES, Botstein D (1989) Mapping mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121:185–199PubMedPubMedCentralGoogle Scholar
  68. Lespinasse D, Rodier-Goud M, Grivet L, Leconte A, Legnate H, Seguin M (2000) A saturated genetic linkage map of rubber tree (Hevea spp.) based on RFLP, AFLP, microsatellite, and isozyme markers. Theor Appl Genet 100:127–138CrossRefGoogle Scholar
  69. Li P, Adams WT (1993) Genetic control of bud phenology in polesize trees and seedlings of coastal Douglas-fir. Can J For Res 23:1043–1105CrossRefGoogle Scholar
  70. Li Z, Jakkula L, Hussey RS, Tamulonis JP, Boerma HR (2001) SSR mapping and confirmation of the QTL from PI96354 conditioning soybean resistance to southern root-knot nematode. Theor Appl Genet 103:1167–1173CrossRefGoogle Scholar
  71. Lind M, Källman T, Chen J, Ma X-F, Bousquet J, Morgante M, Zaina G, Karlsson B, Elfstrand M, Lascoux M, Stenlid J (2014) A Picea abies linkage map based on SNP markers identifies QTLs for four aspects of resistance to Heterobasidion parviporum infection. PLoS One 9(7):e101049PubMedPubMedCentralCrossRefGoogle Scholar
  72. Livingstone KD, Churchill G, Jahn MK (2000) Linkage mapping in populations with karyotypic rearrangements. J Hered 91:423–428PubMedCrossRefGoogle Scholar
  73. Lorieux M, Goffinet B, Perrier X, Deleon D, Lanaud C (1995a) Maximum-likelihood models for mapping genetic markers showing segregation distortion. 1. Backcross populations. Theor Appl Genet 90:73–80PubMedCrossRefGoogle Scholar
  74. Lorieux M, Perrier X, Goffinet B, Lanaud C, Deleon D (1995b) Maximum-likelihood models for mapping genetic markers showing segregation distortion. 2. F2 populations. Theor Appl Genet 90:81–89PubMedCrossRefGoogle Scholar
  75. Lyttle TW (1991) Segregation distorters. Annu Rev Genet 25:511–557PubMedCrossRefGoogle Scholar
  76. Martínez-García PJ, Parfitt DE, Ogundiwin EA, Fass J, Chan HM, Ahmad R, Lurie S, Dandekar A, Gradziel TM, Crisosto CH (2013) High density SNP mapping and QTL analysis for fruit quality characteristics in peach (Prunus persica L.). Tree Genet Genomes 9:19–36CrossRefGoogle Scholar
  77. Mehlenbacher SA (1991) Hazelnut (Corylus). Genetic resources of temperate fruit and nut crops. Acta Hort 290:791–863CrossRefGoogle Scholar
  78. Mehlenbacher SA, Brown RN, Davis JW, Chen H, Bassil NV, Smith DC, Kubisiak TL (2004) RAPD markers linked to eastern filbert blight resistance in Corylus avellana. Theor Appl Genet 108(4):651–656PubMedCrossRefGoogle Scholar
  79. Mehlenbacher SA, Brown RN, Nouhra ER, Gökirmak T, Bassil NV, Kubisiak TL (2006) A genetic linkage map for hazelnut (Corylus avellana L.) based on RAPD and SSR markers. Genome 49:122–133PubMedGoogle Scholar
  80. Parelle J, Zapater M, Scotti-Saintagne C, Kremer A, Jolivet Y, Dreyer E, Brendel O (2007) Quantitative trait loci of tolerance to waterlogging in a European oak (Quercus robur L.): physiological relevance and temporal effect patterns. Plant Cell Environ 30:422–434PubMedCrossRefGoogle Scholar
  81. Paterson AH, Lander ES, Hewitt JD, Peterson S, Lincoln SE, Tanksley SD (1988) Resolution of quantitative traits into mendelian factors by using a complete linkage map of restriction fragment length polymorphisms. Nature 335:721–772PubMedCrossRefGoogle Scholar
  82. Pekkinen M, Varvio S, Kulju K, Karkkainen H, Smolander S, Vihera-Aarnio A, Koski V, Sillanpaa M (2005) Linkage map of birch, Betula pendula Roth, based on microsatellites and amplified fragment length polymorphisms. Genome 48(4):619–625PubMedCrossRefGoogle Scholar
  83. Pilet-Nayel ML, Muehlbauer FJ, McGee RM, Kraft JK, Baranger AB, Coyne CJ (2002) Quantitative trait loci for partial resistance to Aphanomyces root rot in pea. Theor Appl Genet 106:28–39PubMedGoogle Scholar
  84. Plomion C, Durel CE, O’Malley DM (1996) Genetic dissection of height in maritime pine seedlings raised under accelerated growth conditions. Theor Appl Genet 93:849–858PubMedCrossRefGoogle Scholar
  85. Portis E, Mauromicale G, Mauro R, Acquadro A, Scaglione D, Lanteri S (2009) Construction of a reference molecular linkage map of globe artichoke (Cynara cardunculus var. scolymus). Theor Appl Genet 120:59–70PubMedCrossRefGoogle Scholar
  86. Portis E, Scaglione D, Acquadro A, Mauromicale G, Mauro R, Knapp SJ, Lanteri S (2012) Genetic mapping and identification of QTL for earliness in the globe artichoke/cultivated cardoon complex. BMC Res Notes 5:252PubMedPubMedCentralCrossRefGoogle Scholar
  87. Radicati L, Martino I, Vergano G (1994) Factors affecting sucker production in hazelnut. Acta Hort 351:489–494CrossRefGoogle Scholar
  88. R Development Core Team (2008) R: a language and environment for statistical computing, version 2.11.1. R Foundation for Statistical Computing, Wien. http://www.R-project.org
  89. Rai MK, Shekhawat NS (2014) Genomic resources in fruit plants: an assessment of current status. Crit Rev Biotechnol Early Online. doi:10.3109/07388551.2014.898127 Google Scholar
  90. Riaz S, Tenscher AC, Ramming DW, Walker MA (2011) Using a limited mapping strategy to identify major QTLs for resistance to grapevine powdery mildew (Erysiphe necator) and their use in marker-assisted breeding. Theor Appl Genet 122:1059–1073PubMedPubMedCentralCrossRefGoogle Scholar
  91. Rodzen J, May B (2002) Inheritance of microsatellite loci in the white sturgeon (Acipenser transmontanus). Genome 45:1064–1107PubMedCrossRefGoogle Scholar
  92. Rohde A, Storme V, Jorge V, Gaudet M, Vitacolonna N, Fabbrini F, Ruttink T, Zaina G, Marron N, Dillen S, Steenackers M, Sabatti M, Morgante M, Boerjan W, Bastien C (2011) Bud set in poplar-genetic dissection of a complex trait in natural and hybrid populations. New Phytol 189:106–121PubMedCrossRefGoogle Scholar
  93. Salazar JA, Rubio M, Ruiz D, Tartarini S, Martínez-Gómez P, Dondini L (2015) SNP development for genetic diversity analysis in apricot. Tree Genet Genomes 11:15. doi:10.1007/s11295-015-0845-2 CrossRefGoogle Scholar
  94. Salesses G (1973) Etude cytologique du genre Corylus mise en évidence d’une translocation hétérozygote chez quelques variétés de noisetier cultivé (C. avellana), a fertilité pollinique réduite. Ann Amélior Plantes 23:59–66Google Scholar
  95. Salesses G, Bonnet A (1988) Etude cytogénétique d’hybrides entre variétés de noisetier (Corylus avellana) porteuses d’une translocation à l’état hétérozygote. Cytologia 53:407–413CrossRefGoogle Scholar
  96. Santino A, De Paolis A, Gallo A, Quarta A, Casey R, Mita G (2003) Biochemical and molecular characterization of hazelnut (Corylus avellana) seed lipoxygenases. Eur J Biochem 270:4365–4375PubMedCrossRefGoogle Scholar
  97. Sargent DJ, Davis TM, Tobutt KR, Wilkinson MJ, Battey NH, Simpson DW (2004) A genetic linkage map of microsatellite, gene-specific and morphological markers in diploid Fragaria. Theor Appl Genet 109:1385–1391PubMedCrossRefGoogle Scholar
  98. Sathuvalli VR, Mehlenbacher SA (2011) A bacterial artificial chromosome library for ‘Jefferson’ hazelnut and identification of clones associated with eastern filbert blight resistance and pollen-stigma incompatibility. Genome 54:862–867PubMedCrossRefGoogle Scholar
  99. Sathuvalli VR, Mehlenbacher SA (2013) De novo sequencing of hazelnut bacterial artificial chromosomes (BACs) using multiplex Illumina sequencing and targeted marker development for eastern filbert blight resistance. Tree Genet Genomes 9(4):1109–1118CrossRefGoogle Scholar
  100. Sathuvalli VR, Chen H, Mehlenbacher SA, Smith DC (2011) DNA markers linked to eastern filbert blight resistance in “Ratoli” hazelnut (Corylus avellana L.). Tree Genet Genomes 7(2):337–345CrossRefGoogle Scholar
  101. Sathuvalli VR, Mehlenbacher SA, Smith DC (2012) Identification and mapping of DNA markers linked to eastern filbert blight resistance from OSU 408.040 hazelnut. HortSci 47:570–573Google Scholar
  102. Schlautman B, Covarrubias-Pazaran G, Diaz-Garcia LA, Johnson-Cicalese J, Iorrizo M, Rodriguez-Bonilla L, Bougie T, Bougie T, Wiesman E, Steffan S, Polashock J, Vorsa N, Zalapa J (2015) Development of a high-density cranberry SSR linkage map for comparative genetic analysis and trait detection. Mol Breed 35:177CrossRefGoogle Scholar
  103. Schuelke M (2000) An economic method for the fluorescent labeling of PCR fragments. Nat Biotechnol 18:223–224CrossRefGoogle Scholar
  104. Scotti-Saintagne C, Bodénès C, Barreneche T, Bertocchi E, Plomion C, Kremer A (2004) Detection of quantitative trait loci controlling bud burst and height growth in Quercus robur L. Theor Appl Genet 109:1648–1659PubMedCrossRefGoogle Scholar
  105. Sebastian RL, Howell EC, King GJ, Marshall DF, Kearsey MJ (2000) An integrated AFLP and RFLP Brassica oleracea linkage map from two morphologically distinct doubled-haploid mapping populations. Theor Appl Genet 100:75–81CrossRefGoogle Scholar
  106. Shaw P, Turan C, Wright J, O’Connell M, Carvalho G (1999) Microsatellite DNA analysis of population structure in Atlantic herring (Clupea harengus), with direct comparison to allozyme and mtDNA RFLP analyses. Heredity 83:490–499PubMedCrossRefGoogle Scholar
  107. Soriano JM, Vera-Ruiz EM, Vilanova S, Martínez-Calvo J, Llácer A, Badenes ML, Romero C (2008) Identification and mapping of a locus conferring plum pox virus resistance in two apricot-improved linkage maps. Tree Genet Genomes 4:391–402CrossRefGoogle Scholar
  108. Sun R, Chang Y, Yang F, Wang Y, Li H, Zhao Y, Chen D, Wu T, Zhang X, Han Z (2015) A dense SNP genetic map constructed using restriction site-associated DNA sequencing enables detection of QTLs controlling apple fruit quality. Genomics 16:747PubMedPubMedCentralGoogle Scholar
  109. Tancred SJ, Zeppa AG, Cooper M, Stringer JK (1995) Heritability and patterns of inheritance of the ripening date of apples. Hort Sci 30:325–328Google Scholar
  110. Tsarouhas V, Gullberg U, Lagercrantz U (2002) An AFLP and RFLP linkage map and quantitative trait locus (QTL) analysis of growth traits in Salix. Theor Appl Genet 105:277–288PubMedCrossRefGoogle Scholar
  111. Tschaplinski TJ, Tuskan GA, Sewell MM, Gebre GM, Todd DE, Pendley CD (2006) Phenotypic variation and quantitative trait locus identification for osmotic potential in an interspecific hybrid inbred F2 poplar pedigree grown in contrasting environments. Tree Physiol 26:595–604PubMedCrossRefGoogle Scholar
  112. UPOV [International Union for the Protection of New Varieties of Plants] (1979) Hazelnut (Corylus avellana L. & Corylus maxima Mill.): guidelines for the conduct of tests for distinctness, uniformity and stability. Hazelnut/Noisetier/Haselnuss, 79-03-28. Doc. no. TG/71/3. UPOV, Geneva. Switzerland. http://www.upov.int/en/publications/tgrom/tg071/tg_71_3.pdf
  113. Valentini N, Ghirardello D, Me G (2004) Heritability of morphological and vegetative traits in Corylus spp. Acta Hort 663:317–320CrossRefGoogle Scholar
  114. Van Ooijen JW (1992) Accuracy of mapping quantitative trait loci in autogamous species. Theor Appl Genet 84(7–8):803–811PubMedCrossRefGoogle Scholar
  115. Van Ooijen J (2006) JoinMap® 4: software for the calculation of genetic linkage maps in experimental populations. Kyazma BV, WageningenGoogle Scholar
  116. Van Ooijen JW, Boer MP, Jansen RC, Maliepaard C (2002) MapQTL 4.0: software for the calculation of QTL positions on genetic maps. Plant Research International, WageningenGoogle Scholar
  117. Van Oosterhout C, Hutchinson W, Wills D, Shipley P (2004) MICRO-CHEKER: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538CrossRefGoogle Scholar
  118. Virlet N, Costes E, Martinez S, Kelner JJ, Regnard JL (2015) Multispectral airborne imagery in the field reveals genetic determinisms of morphological and transpiration traits of an apple tree hybrid population in response to water deficit. J Exp Bot 66(18):5385–5387CrossRefGoogle Scholar
  119. Voorrips R (2002) MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered 93(1):77–78PubMedCrossRefGoogle Scholar
  120. Wu SB, Collins G, Sedgley M (2004) A molecular linkage map of olive (Olea europea L.) based on RAPD, microsatellite, and SCAR markers. Genome 47:26–35PubMedCrossRefGoogle Scholar
  121. Yang H, Liu T, Xu B, Liu C, Zhao F, Huang S (2015) QTL detection for growth and form traits in three full-sib pedigrees of Pinus elliottii var. elliottii × P. caribaea var. hondurensis hybrids. Tree Genet Genomes 11:130CrossRefGoogle Scholar
  122. Zarpelon TG, da Silva Guimarães LM, Assis Faria D, Magalhães Coutinho M, Cápua Neto B, Ubirajara Teixeira R, Grattapaglia D, Couto Alfenas A (2015) Genetic mapping and validation of QTLs associated with resistance to Calonectria leaf blight caused by Calonectria pteridis in Eucalyptus. Tree Genet Genomes 11(1):803CrossRefGoogle Scholar
  123. Zhang K, Wang D, Yang C, Liu G, Liu G, Zhang H, Lian L, Wei Z (2012) Linkage map construction and QTL analysis for Betula platyphylla Suk using RAPD, AFLP, ISSR and SSR. Silvae Genet 61:1–9Google Scholar
  124. Zhang RP, Wu J, Li XG, Awais Khan M, Chen H, Korban SS, Zhang SL (2013) An AFLP, SRAP, and SSR genetic linkage map and identification of QTLs for fruit traits in pear (Pyrus L.). Plant Mol Biol Rep 31:678–687CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Chiara Beltramo
    • 1
  • Nadia Valentini
    • 1
  • Ezio Portis
    • 1
  • Daniela Torello Marinoni
    • 1
  • Paolo Boccacci
    • 1
    • 2
  • Maria Angelica Sandoval Prando
    • 1
  • Roberto Botta
    • 1
  1. 1.Department of Agricultural, Forestry and Food Science (DISAFA)University of TurinGrugliascoItaly
  2. 2.Institute for Sustainable Plant Protection - National Research Council (IPSP-CNR)Unit of GrugliascoGrugliascoItaly

Personalised recommendations