Advertisement

Molecular Breeding

, 35:180 | Cite as

Mapping of a resistance gene to loose smut (Ustilago tritici) from the Canadian wheat breeding line BW278

  • Mulualem T. Kassa
  • Jim G. Menzies
  • Curt A. McCartney
Article

Abstract

Loose smut is a common disease of wheat caused by the fungus Ustilago tritici (Pers.) Rostr. Production of resistant cultivars is an effective strategy for managing this disease. Relatively few loose smut resistance genes have been identified in bread and durum wheat. The genetic basis of resistance to U. tritici in the Canadian wheat breeding line BW278 was studied in a recombinant inbred line (RIL) population of 94 individuals developed from the bread wheat cross BW278/‘AC Foremost’. BW278 showed complete resistance to U. tritici race T9, whereas ‘AC Foremost’ was susceptible. Phenotypic assessment of the RILs indicated that a single gene, temporarily designated as UtBW278, segregated for loose smut resistance. Markers linked to UtBW278 were identified by bulked segregant analysis. Linkage analysis revealed that UtBW278 was located on the short arm of chromosome 5B and identified four single-nucleotide polymorphism (SNP) loci that co-segregated with UtBW278. Interestingly, UtBW278 mapped closely to a sequence characterized amplified region marker that was previously linked to the loose smut resistance gene Utd1 from durum wheat. Haplotype analysis of a panel of wheat lines was conducted to identify wheat lines that could carry UtBW278. SNP markers were identified for marker-assisted selection of UtBW278.

Keywords

UtBW278 Loose smut Ustilago tritici Wheat Triticum aestivum 

Notes

Acknowledgments

The authors thank Cheri Saramaga, Yanfen Zheng, and Zlatko Popovic for technical assistance. Funding for the project was provided by Genome Canada, Western Grains Research Foundation, and Agriculture and Agri-Food Canada Crop Genomics Initiative.

Supplementary material

11032_2015_369_MOESM1_ESM.xls (36 kb)
Supplementary material 1 (XLS 36 kb)
11032_2015_369_MOESM2_ESM.doc (120 kb)
Supplementary material 2 (DOC 120 kb)

References

  1. Bailey KL, Gossen BD, Gugel RK, Morrall RAA (2003) Diseases of field crops in Canada, 3rd edn. University Extension Press, University of Saskatchewan, SaskatoonGoogle Scholar
  2. Dhitaphichit P, Jones P, Keane EM (1989) Nuclear and cytoplasmic gene control of resistance to loose smut (Ustilago tritici (Pers.) Rostr.) in wheat (Triticum aestivum L.). Theor Appl Genet 78(6):897–903. doi: 10.1007/BF00266678 CrossRefPubMedGoogle Scholar
  3. Gnanesh BN, Mitchell Fetch J, Menzies JG, Beattie AD, Eckstein PE, McCartney CA (2013) Chromosome location and allele-specific PCR markers for marker-assisted selection of the oat crown rust resistance gene Pc91. Mol Breed 32(3):679–686. doi: 10.1007/s11032-013-9900-6 CrossRefGoogle Scholar
  4. Grevel FK (1930) Investigations on the occurrence of biological strains of the loose smut of wheat (Ustilago tritici). Phytopathol Z 2:209–234Google Scholar
  5. Grewal AS, Nanda GS, Gurdev S, Mahal GS (1997) Genetic analysis of loose smut resistance in bread wheat. Crop Improv 24:189–193Google Scholar
  6. Kassa MT, Menzies JG, McCartney CA (2014) Mapping of the loose smut resistance gene Ut6 in wheat (Triticum aestivum L.). Mol Breed 33(3):569–576. doi: 10.1007/s11032-013-9973-2 CrossRefGoogle Scholar
  7. Kaur G, Sharma I, Sharma RC (2014) Characterization of Ustilago segetum tritici **causing loose smut of wheat in northwestern India. Can J Plant Pathol 36(3):360–366. doi: 10.1080/07060661.2014.924559 CrossRefGoogle Scholar
  8. Knox RE (1994) Chromosomal location and linkage analysis of loose smut resistance in wheat. University of Manitoba, CanadaGoogle Scholar
  9. Knox RE, Howes NK (1994) A monoclonal antibody chromosome marker analysis used to locate a loose smut resistance gene in wheat chromosome 6A. Theor Appl Genet 89(6):787–793. doi: 10.1007/BF00223720 CrossRefPubMedGoogle Scholar
  10. Knox RE, Menzies JG (2012) Resistance in wheat to loose smut. In: Sharma I (ed) Disease resistance in wheat. Punjab Agricultural University, India, pp 160–189CrossRefGoogle Scholar
  11. Knox RE, Fernandez MR, Brûlé-Babel AL, De Pauw RM (1999) Inheritance of loose smut (Ustilago tritici) resistance in two hexaploid wheat (Triticum aestivum) lines. Can J Plant Pathol 21(2):174–180CrossRefGoogle Scholar
  12. Knox RE, Menzies JG, Howes NK, Clarke JM, Aung T, Penner GA (2002) Genetic analysis of resistance to loose smut and an associated DNA marker in durum wheat doubled haploids. Can J Plant Pathol 24(3):316–322CrossRefGoogle Scholar
  13. Lorieux M (2012) MapDisto: fast and efficient computation of genetic linkage maps. Mol Breed 30(2):1231–1235CrossRefGoogle Scholar
  14. Menzies JG (2008) Carboxin tolerant strains of Ustilago nuda and Ustilago tritici in Canada. Can J Plant Pathol 30(3):498–502. doi: 10.1080/07060660809507548 CrossRefGoogle Scholar
  15. Menzies JG, Knox RE, Nielsen J, Thomas PL (2003) Virulence of Canadian isolates of Ustilago tritici: 1964–1998, And the use of the geometric rule in understanding host differential complexity. Can J Plant Pathol 25(1):62–72CrossRefGoogle Scholar
  16. Menzies JG, Turkington TK, Knox RE (2009) Testing for resistance to smut diseases of barley, oats and wheat in western Canada. Can J Plant Pathol 31(3):265–279. doi: 10.1080/07060660909507601 CrossRefGoogle Scholar
  17. Nielsen J (1977) Inheritance of virulence of loose smut of wheat, Ustilago tritici, on the differential cultivars Renfrew, Florence X Aurore, Kota, and Little Club. Can J Bot 55:260–263CrossRefGoogle Scholar
  18. Nielsen J (1982) Inheritance of virulence of Ustilago tritici on the differential cultivars Carma, Red Bobs, and a derivative of the cross Thatcher X Regent Spring wheat. Can J Bot 60:1191–1193CrossRefGoogle Scholar
  19. Nielsen J (1987) Races of Ustilago tritici and techniques for their study. Can J Plant Pathol 9:91–105CrossRefGoogle Scholar
  20. Nielsen J, Thomas P (1996) Loose smut. In: Wilcoxson RD, Saari EE (eds) Bunt and smut diseases of wheat: concepts and methods of disease management. CIMMYT, Mexico, pp 33–47Google Scholar
  21. Oort AJP (1963) A gene-for-gene relationship in the TriticumUstilago system, and some remarks on host-pathogen combinations in general. Neth J Plant Pathol 69(1):104–109. doi: 10.1007/BF01998694 CrossRefGoogle Scholar
  22. Procunier JD, Knox RE, Bernier AM, Gray MA, Howes NK (1997) DNA markers linked to a T10 loose smut resistance gene in wheat (Triticum aestivum L.). Genome 40(2):176–179CrossRefPubMedGoogle Scholar
  23. Randhawa HS, Popovic Z, Menzies J, Knox R, Fox S (2009) Genetics and identification of molecular markers linked to resistance to loose smut (Ustilago tritici) race T33 in durum wheat. Euphytica 169(2):151–157. doi: 10.1007/s10681-009-9903-x CrossRefGoogle Scholar
  24. Somers DJ, Isaac P, Edwards K (2004) A high-density microsatellite consensus map for bread wheat (Triticum aestivum L.). Theor Appl Genet 109(6):1105–1114CrossRefPubMedGoogle Scholar
  25. Song QJ, Shi JR, Singh S, Fickus EW, Costa JM, Lewis J, Gill BS, Ward R, Cregan PB (2005) Development and mapping of microsatellite (SSR) markers in wheat. Theor Appl Genet 110(3):550–560CrossRefPubMedGoogle Scholar
  26. Thomas JB, DePauw RM, Knox RE, Czarnecki E, Campbell AB, Nielsen J, McKenzie RIH, Degenhardt KJ, Morrison RJ (1997) AC Foremost red spring wheat. Can J Plant Sci 77(4):657–660CrossRefGoogle Scholar
  27. Tikhomirov VT (1983) Genetics of resistance in wheat to Ustilago tritici (Pers.) Jens. I. Analysis of host-pathogen interactions on the basis of Flor’s gene-for-gene hypothesis. Genetika (Moscow) 19:295–303Google Scholar
  28. Wang S, Wong D, Forrest K, Allen A, Chao S, Huang BE, Maccaferri M, Salvi S, Milner SG, Cattivelli L, Mastrangelo AM, Whan A, Stephen S, Barker G, Wieseke R, Plieske J, Lillemo M, Mather D, Appels R, Dolferus R, Brown-Guedira G, Korol A, Akhunova AR, Feuillet C, Salse J, Morgante M, Pozniak C, Luo MC, Dvorak J, Morell M, Dubcovsky J, Ganal M, Tuberosa R, Lawley C, Mikoulitch I, Cavanagh C, Edwards KJ, Hayden M, Akhunov E (2014) Characterization of polyploid wheat genomic diversity using a high-density 90 000 single nucleotide polymorphism array. Plant Biotechnol J 12(6):787–796. doi: 10.1111/pbi.12183 PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© Her Majesty the Queen in Rights of Canada  2015

Authors and Affiliations

  • Mulualem T. Kassa
    • 1
  • Jim G. Menzies
    • 1
  • Curt A. McCartney
    • 1
  1. 1.Cereal Research CentreAgriculture and Agri-Food CanadaMordenCanada

Personalised recommendations