Skip to main content
Log in

QTL analysis for stomatal functioning in tetraploid Rosa × hybrida grown at high relative air humidity and its implications on postharvest longevity

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

High relative air humidity (RH ≥ 85 %) during leaf development disturbs stomatal functioning leading to excessive water loss in conditions of high evaporative demand, resulting in severe reduction in postharvest longevity. In roses, this effect depends on the genotype, opening the possibility for breeding cultivars with more responsive stomata. In this study, we aim at identifying genomic regions associated with the control of water loss following growth at high RH. The F1 generation (108 offspring) and the two parents (P540 and P867) of a tetraploid cut rose population grown at high (85 %) RH were phenotyped for stomatal control to water loss by assessing the relative water content after 4 h of leaflet desiccation (RWC_4 h). The RWC_4 h varied between 7 and 62 % across the 110 studied individuals, with parents P540 and P867 showing 51 and 20 % RWC_4 h, respectively. Based on these data, a quantitative trait locus (QTL) analysis was performed. The impact of the identified QTLs on postharvest longevity of ten selected offspring was further evaluated. Three QTLs were identified: two major [positioned on linkage group 5 of the integrated consensus map (ICM 5) of both parents and on ICM 2 of the parent P867] and one putative minor (mapped to ICM 6 of both parents), explaining 32 % of the variability in the RWC_4 h. Low RWC_4 h was found to be a good proxy for eliminating the offspring with short vase life. This study constitutes a first step toward identifying the most likely regions for genes of interest controlling stomatal functioning in high RH-grown plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. The last two numbers in the marker name refer to the segregation type where 01 = nulliplex × simplex and 11 = simplex × simplex.

Abbreviations

ICM:

Integrated consensus map

MAS:

Marker-assisted selection

QTL:

Quantitative trait locus

RH:

Relative air humidity

RWC:

Relative water content

RWC_4 h:

Relative water content after 4 h of leaflet desiccation

SNP:

Single nucleotide polymorphism

VPD:

Vapor pressure deficit

References

  • Berninger E (1992) Le rosier de serre pour fleurs à couper. In: Gallais ABH (ed) Amélioration des espèces végétales cultivées, objectifs et critères de sélection. INRA Editions, Paris, pp 490–504

    Google Scholar 

  • Brosché M, Merilo E, Mayer F et al (2010) Natural variation in ozone sensitivity among Arabidopsis thaliana accessions and its relation to stomatal conductance. Plant, Cell Environ 33:914–925. doi:10.1111/j.1365-3040.2010.02116.x

    Article  Google Scholar 

  • Buck GJ (1960) Progress report on breeding hardy ever-blooming roses. Am Rose Annu 45:95–99

    Google Scholar 

  • Collard BCY, Jahufer MZZ, Brouwer JB, Pang ECK (2005) An introduction to markers, quantitative trait loci (QTL) mapping and marker-assisted selection for crop improvement: the basic concepts. Euphytica 142:169–196. doi:10.1007/s10681-005-1681-5

    Article  CAS  Google Scholar 

  • Crespel L, Chirollet M, Durel CE et al (2002) Mapping of qualitative and quantitative phenotypic traits in Rosa using AFLP markers. Theor Appl Genet 105:1207–1214. doi:10.1007/s00122-002-1102-2

    Article  CAS  PubMed  Google Scholar 

  • Drake PL, Froend RH, Franks PJ (2013) Smaller, faster stomata: scaling of stomatal size, rate of response, and stomatal conductance. J Exp Bot 64:495–505. doi:10.1093/jxb/ers347

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dugo ML, Satovic Z, Millán T et al (2005) Genetic mapping of QTLs controlling horticultural traits in diploid roses. Theor Appl Genet 111:511–520. doi:10.1007/s00122-005-2042-4

    Article  CAS  PubMed  Google Scholar 

  • Fanourakis D, Tapia A, Heuvelink E, Carvalho SMP (2009) Cultivar differences in the stomatal characteristics of cut roses grown at high relative humidity. Acta Hortic 847:251–258

    CAS  Google Scholar 

  • Fanourakis D, Carvalho SMP, Almeida DPF, Heuvelink E (2011) Avoiding high relative air humidity during critical stages of leaf ontogeny is decisive for stomatal functioning. Physiol Plant 142:274–286. doi:10.1111/j.1399-3054.2011.01475.x

    Article  CAS  PubMed  Google Scholar 

  • Fanourakis D, Carvalho SMP, Almeida DPF et al (2012a) Postharvest water relations in cut rose cultivars with contrasting sensitivity to high relative air humidity during growth. Postharvest Biol Technol 64:64–73. doi:10.1016/j.postharvbio.2011.09.016

    Article  Google Scholar 

  • Fanourakis D, Carvalho DRA, Gitonga VW et al (2012b) Breeding cut roses for better keeping quality: first steps. Acta Hortic 937:875–882

    Google Scholar 

  • Fanourakis D, Heuvelink E, Carvalho SMP (2013a) A comprehensive analysis of the physiological and anatomical components involved in higher water loss rates after leaf development at high humidity. J Plant Physiol 170:890–898. doi:10.1016/j.jplph.2013.01.013

    Article  CAS  PubMed  Google Scholar 

  • Fanourakis D, Pieruschka R, Savvides A et al (2013b) Sources of vase life variation in cut roses: a review. Postharvest Biol Technol 78:1–15. doi:10.1016/j.postharvbio.2012.12.001

    Article  Google Scholar 

  • Ghashghaie J, Brenckmann F, Saugier B (1992) Water relations and growth of rose plants cultured in vitro under various relative humidities. Plant Cell, Tissue Organ Cult 30:51–57. doi:10.1007/BF00040000

    Article  Google Scholar 

  • Giday H, Fanourakis D, Kjaer KH et al (2013) Foliar abscisic acid content underlies genotypic variation in stomatal responsiveness after growth at high relative air humidity. Ann Bot 112:1857–1867. doi:10.1093/aob/mct220

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Giday H, Fanourakis D, Kjaer KH et al (2014) Threshold response of stomatal closing ability to leaf abscisic acid concentration during growth. J Exp Bot 65:4361–4370. doi:10.1093/jxb/eru216

    Article  PubMed Central  PubMed  Google Scholar 

  • Gudin S (1995) Rose improvement, a breeder’s experience. Acta Hortic 420:125–128

    Google Scholar 

  • Gudin S, Mouchotte J (1996) Integrated research in rose improvement—a breeder’s experience. Acta Hortic 424:285–292

    Google Scholar 

  • Jacob Y, Teyssier C, Reynders-Aloisi S, Brown S (1996) Use of flow cytometry for the rapid determination of ploidy level in the genus Rosa. Acta Hortic 424:273–278

    Google Scholar 

  • Koning-Boucoiran CFS, Gitonga VW, Yan Z et al (2012) The mode of inheritance in tetraploid cut roses. Theor Appl Genet 125:591–607. doi:10.1007/s00122-012-1855-1

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Koning-Boucoiran CFS, Esselink GD, Vukosavljev M et al (2015) Using RNA-Seq to assemble a rose transcriptome with more than 13,000 full-length expressed genes and to develop the WagRhSNP 68 k Axiom SNP array for rose (Rosa L.). Front Plant Sci. doi:10.3389/fpls.2015.00249

    PubMed Central  PubMed  Google Scholar 

  • Linde M, Hattendorf A, Kaufmann H, Debener T (2006) Powdery mildew resistance in roses: QTL mapping in different environments using selective genotyping. Theor Appl Genet 113:1081–1092. doi:10.1007/s00122-006-0367-2

    Article  CAS  PubMed  Google Scholar 

  • Mortensen LM, Gislerød HR (1999) Influence of air humidity and lighting period on growth, vase life and water relations of 14 rose cultivars. Sci Hortic (Amsterdam) 82:289–298. doi:10.1016/S0304-4238(99)00062-X

    Article  Google Scholar 

  • Rezaei Nejad A, van Meeteren U (2005) Stomatal response characteristics of Tradescantia virginiana grown at high relative air humidity. Physiol Plant 125:324–332. doi:10.1111/j.1399-3054.2005.00567.x

    Article  Google Scholar 

  • Ribaut J-M, Hoisington D (1998) Marker-assisted selection: new tools and strategies. Trends Plant Sci 3:236–239. doi:10.1016/S1360-1385(98)01240-0

    Article  Google Scholar 

  • Sáez PL, Bravo LA, Latsague MI et al (2012) Increased light intensity during in vitro culture improves water loss control and photosynthetic performance of Castanea sativa grown in ventilated vessels. Sci Hortic (Amsterdam) 138:7–16. doi:10.1016/j.scienta.2012.02.005

    Article  Google Scholar 

  • Santamaria JM, Davies WJ, Atkinson CJ (1993) Stomata of micropropagated Delphinium plants respond to ABA, CO2, light and water potential, but fail to close fully. J Exp Bot 44:99–107

    Article  CAS  Google Scholar 

  • Slavík B (1974) Methods of studying plant water relations. Chapman and Hall, London

    Book  Google Scholar 

  • Spiller M, Linde M, Hibrand-Saint Oyant L et al (2011) Towards a unified genetic map for diploid roses. Theor Appl Genet 122:489–500. doi:10.1007/s00122-010-1463-x

    Article  PubMed  Google Scholar 

  • Teulat B, Zoumarou-Wallis N, Rotter B et al (2003) QTL for relative water content in field-grown barley and their stability across Mediterranean environments. Theor Appl Genet 108:181–188. doi:10.1007/s00122-003-1417-7

    Article  CAS  PubMed  Google Scholar 

  • Torre S, Fjeld T, Gislerod HR, Moe R (2003) Leaf anatomy and stomatal morphology of greenhouse roses grown at moderate or high air humidity. J Am Soc Hortic Sci 128:598–602

    Google Scholar 

  • Van Kooten O, Kuiper E (2009) Consumer acceptability in flower chains: how can we determine what the final customers really want? Acta Hortic 847:17–26

    Google Scholar 

  • Van Meeteren U, Van Gelder H, Van Ieperen W (1999) Reconsideration of the use of deionized water as vase water in postharvest experiments on cut flowers. Postharvest Biol Technol 17:175–187. doi:10.1016/S0925-5214(99)00050-2

    Article  Google Scholar 

  • Van Meeteren U, van Gelder A, van Ieperen W (2005) Effect of growth conditions on post harvest rehydration ability of cut chrysanthemum flowers. Acta Hortic 669:287–296

    Google Scholar 

  • Van Ooijen J (2006) JoinMap, software for the calculation of genetic linkage maps, 4th edn. BVK, Wageningen

    Google Scholar 

  • VBN (2005) Evaluation cards for cut flowers. VBN, Leiden

    Google Scholar 

  • Voorrips RE (2002) MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered 93:77–78. doi:10.1093/jhered/93.1.77

    Article  CAS  PubMed  Google Scholar 

  • Voorrips RE, Gort G, Vosman B (2011) Genotype calling in tetraploid species from bi-allelic marker data using mixture models. BMC Bioinformatics 12:172. doi:10.1186/1471-2105-12-172

    Article  PubMed Central  PubMed  Google Scholar 

  • Yan Z, Dolstra O, Prins TW et al (2006) Assessment of partial resistance to powdery mildew (Podosphaera pannosa) in a tetraploid rose population using a spore-suspension inoculation method. Eur J Plant Pathol 114:301–308. doi:10.1007/s10658-005-5995-x

    Article  Google Scholar 

  • Yu C, Luo L, Pan H et al (2015) Filling gaps with construction of a genetic linkage map in tetraploid roses. Front Plant Sci 5:1–9. doi:10.3389/fpls.2014.00796

    Article  Google Scholar 

  • Zhao XQ, Xu JL, Zhao M et al (2008) QTLs affecting morph-physiological traits related to drought tolerance detected in overlapping introgression lines of rice (Oryza sativa L.). Plant Sci 174:618–625. doi:10.1016/j.plantsci.2008.03.009

    Article  CAS  Google Scholar 

  • Ziv M, Schwartz A, Fleminger D (1987) Malfunctioning stomata in vitreous leaves of carnation (Dianthus caryophyllus) plants propagated in vitro; Implications for hardening. Plant Sci 52:127–134. doi:10.1016/0168-9452(87)90114-2

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge Dümmen Orange (the Netherlands) for generating the K5 population and making it available. We also thank Peter Bourke for his help with the marker files.

Author contributions

D.R.A.C and D.F performed the experiments and collected the phenotypic data. C.F.S.K.B and C.M performed the QTL analysis. D.R.A.C, C.F.S.K.B, F.A.K and C.M analyzed the data. All authors contributed to the interpretation of the results and to the critical review of the manuscript. All authors approved the final manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dália R. A. Carvalho.

Ethics declarations

Conflict of interest

Dália R.A. Carvalho has received the Ph.D Grant SFRH/BD/72924/2010 from the Foundation for Science and Technology (Portugal).

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 194 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carvalho, D.R.A., Koning-Boucoiran, C.F.S., Fanourakis, D. et al. QTL analysis for stomatal functioning in tetraploid Rosa × hybrida grown at high relative air humidity and its implications on postharvest longevity. Mol Breeding 35, 172 (2015). https://doi.org/10.1007/s11032-015-0365-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11032-015-0365-7

Keywords

Navigation