Advertisement

Molecular Breeding

, 35:152 | Cite as

Genetic structure, linkage disequilibrium and association mapping of salt tolerance in japonica rice germplasm at the seedling stage

  • Hongliang Zheng
  • Jingguo Wang
  • Hongwei Zhao
  • Hualong Liu
  • Jian Sun
  • Liying Guo
  • Detang ZouEmail author
Article

Abstract

Soil salinity is a major constraint to rice production. Understanding the genetic basis of salt tolerance is crucial for the improvement of salt tolerance through breeding. Previous quantitative trait locus (QTL) studies for salt tolerance were mainly derived from bi-parental segregating populations and relatively little is known about the results from natural populations. Understanding the genetic diversity, population structure and linkage disequilibrium (LD) in an association panel can effectively avoid spurious associations in association mapping. In this study, 341 japonica rice (Oryza sativa L. subsp. japonica) accessions worldwide were genotyped with 160 simple sequence repeat (SSR) markers to identify marker-trait associations with salt tolerance at the seedling stage. Salt tolerance was evaluated by survival days of seedlings and shoot K+/Na+ ratio. A total of 872 alleles ranging from 2 to 9 per locus were identified from all collections. Population structure analysis identified three main subpopulations for the accessions. Of the SSR pairs in these accessions, 40.05 % marker pairs showed significant LD (P < 0.01). The LD level for linked markers is significantly higher than that for unlinked markers, and LD level was elevated when the panel was classified into subpopulations. The LD decayed to the background at approximately 20–50 cM within the total panel and each subpopulation. A total of ten marker loci associated with salt tolerance were identified using MLM (Q + K) models in TASSEL 3.0. Among which nine marker loci confirmed or narrowed the genomic region reported to harbor QTLs for salt tolerance by linkage mapping in previous reports, and four salt tolerance-related genes were located in the QTL regions in the present study. According to phenotypic effects for alleles of the detected QTLs, favorable alleles were mined. These favorable alleles could be used to design parental combinations and the expected results would be obtained by pyramiding or substituting the favorable alleles per QTL (apart from possible epistatic effects). Our results demonstrate that association mapping can complement and enhance previous QTL information for marker-assisted selection and breeding by design.

Keywords

Japonica rice Genetic structure Linkage disequilibrium Association mapping Salt tolerance Favorable alleles 

Notes

Acknowledgments

This work was supported by the National Science and Technology support programs of China (2011BAD35B02-01 and 2013BAD20B04), Science and Technology support programs of the Science and Technology Ministry of China (2011BAD16B11).

Supplementary material

11032_2015_342_MOESM1_ESM.docx (354 kb)
Supplementary material 1 (DOCX 353 kb)

References

  1. Agrama HA, Eizenga GC (2008) Molecular diversity and genomewide linkage disequilibrium patterns in a worldwide collection of Oryza sativa and its wild relatives. Euphytica 160:339–355CrossRefGoogle Scholar
  2. Agrama HA, Eizenga GC, Yan W (2007) Association mapping of yield and its components in rice cultivars. Mol Breed 19:341–356CrossRefGoogle Scholar
  3. Ahmadi N, Negrão S, Katsantonis D, Frouin J, Ploux J, Letourmy P, Droc G, Babo P, Trindade H, Bruschi G, Greco R, Oliveira MM, Piffanelli P, Courtois B (2011) Targeted association analysis identified japonica rice varieties achieving Na+/K+ homeostasis without the allelic make-up of the salt tolerant indica variety Nona Bokra. Theor Appl Genet 123:881–895PubMedCrossRefGoogle Scholar
  4. Ammar MHM, Pandit A, Singh RK, Sameena S, Chauhan MS, Singh AK, Sharma PC, Gaikwad K, Sharma TR, Mohapatra T, Singh NK (2009) Mapping of QTLs controlling Na+, K+ and Cl ion concentrations in salt tolerant indica rice variety CSR27. J Plant Biochem Biotechnol 18:139–150CrossRefGoogle Scholar
  5. Asch F, Dingkuhn M, DörZing K, Miezan K (2000) Leaf K/Na ratio predicts salinity induced yield loss in irrigated rice. Euphytica 113:109–118CrossRefGoogle Scholar
  6. Bonilla P, Mackill D, Deal K, Gregorio G (2002) RFLP and SSLP mapping of salinity tolerance genes in chromosome 1 of rice (Oryza sativa L.) using recombinant inbred lines. Philipp Agric Sci 85:68–76Google Scholar
  7. Bradbury PJ, Zhang Z, Kroon DE, Casstevens TM, Ramdoss Y, Buckler ES (2007) TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics 23:2633–2635PubMedCrossRefGoogle Scholar
  8. Cui D, Xu CY, Tang CF, Yang CG, Yu TQ, Xin-xiang A, Cao GL, Xu FR, Zhang JG, Han LZ (2013) Genetic structure and association mapping of cold tolerance in improved japonica rice germplasm at the booting stage. Euphytica 193:369–382CrossRefGoogle Scholar
  9. Dang XJ, Thi TGT, Dong GS, Wang H, Edzesi WM, Hong DL (2014) Genetic diversity and association mapping of seed vigor in rice (Oryza sativa L.). Planta 239:1309–1319PubMedCrossRefGoogle Scholar
  10. Doyl JJ, Doyle JL (1990) Isolation of plant DNA from fresh tissue. Focus 12:13–15Google Scholar
  11. Ersoz ES, Yu J, Buckler ES (2007) Applications of linkage disequilibrium and association mapping in crop plants. Genomics-assisted crop improvement Springer, Dordrecht, pp 97–120Google Scholar
  12. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620PubMedCrossRefGoogle Scholar
  13. Flint-Garcia S, Thornsberry J, Buckler ES (2003) Structure of linkage disequilibrium in plants. Annu Rev Plant Biol 54:357–374PubMedCrossRefGoogle Scholar
  14. Flowers TJ (2004) Improving crop salt tolerance. J Exp Bot 55:307–319PubMedCrossRefGoogle Scholar
  15. Garris AJ, McCouch SR, Kresovich S (2003) Population structure and its effects on haplotype diversity and linkage disequilibrium surrounding the xa5 locus of rice (Oryza sativa L.). Genetics 165:759–769PubMedCentralPubMedGoogle Scholar
  16. Garris AJ, Tai TH, Coburn J, Kresovich S, McCouch SR (2005) Genetic structure and diversity in Oryza sativa L. Genetics 169:1631–1638PubMedCentralPubMedCrossRefGoogle Scholar
  17. Gregorio GB, Senadhira D, Mendoza RD (1997) Screening rice for salinity tolerance. IRRI Discuss Paper Ser 22:1–30Google Scholar
  18. Gregorio GB, Senadhira D, Mendoza RD, Manigbas NL, Roxas JP, Guerta CQ (2002) Progress in breeding for salinity tolerance and associated abiotic stresses in rice. Field Crop Res 76:91–101CrossRefGoogle Scholar
  19. Hardy OJ, Vekemans X (2002) SPAGEDi: a versatile computer program to analyse spatial genetic structure at the individual or population levels. Mol Ecol Notes 2:618–620CrossRefGoogle Scholar
  20. Hossain MA, Cho JI, Han M, Ahn CH, Jeon JS, An G, Park PB (2010) The ABRE-binding bZIP transcription factor OsABF2 is a positive regulator of abiotic stress and ABA signaling in rice. J Plant Physiol 167:1512–1520PubMedCrossRefGoogle Scholar
  21. Huang XH, Wei XH, Sang T et al (2010) Genome-wide association studies of 14 agronomic traits in rice landraces. Nat Genet 42:961–967PubMedCrossRefGoogle Scholar
  22. Jakobsson M, Rosenberg NA (2007) CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 21:1801–1806CrossRefGoogle Scholar
  23. Jia LM, Yan WG, Zhu CS, Agrama HA, Jackson A, Yeater K, Li XB, Huang BH, Hu BL, McClung A, Wu DX (2012) Allelic analysis of sheath blight resistance with association mapping in rice. PLoS One 7:e32703PubMedCentralPubMedCrossRefGoogle Scholar
  24. Jin L, Lu Y, Xiao P, Sun M, Corke H, Bao JS (2010) Genetic diversity and population structure of a diverse set of rice germplasm for association mapping. Theor Appl Genet 121:475–487PubMedCrossRefGoogle Scholar
  25. Jun TH, Van K, Kim MY, Lee SH, Walker DR (2008) Association analysis using SSR markers to find QTL for seed protein content in soybean. Euphytica 162:179–191CrossRefGoogle Scholar
  26. Kim DM, Ju HG, Kwon TR, Oh CS, Ahn SN (2009) Mapping QTLs for salt tolerance in an introgression line population between japonica cultivars in rice. J Crop Sci Biotech 12:121–128CrossRefGoogle Scholar
  27. Koyama ML, Levesley A, Koebner RM, Flowers TJ, Yeo AR (2001) Quantitative trait loci for component physiological traits determining salt tolerance in rice. Plant Physiol 125:406–422PubMedCentralPubMedCrossRefGoogle Scholar
  28. Kraakman ATW, Niks RE, Van den Berg PMMM, Stam P, Van Eeuwijk FA (2004) Linkage disequilibrium mapping of yield and yield stability in modern spring barley cultivars. Genetics 168:435–446PubMedCentralPubMedCrossRefGoogle Scholar
  29. Lapitan VC, Brar DS, Abe T, Redona ED (2007) Assessment of genetic diversity of Philippine rice cultivars carrying good quality traits using SSR markers. Breed Sci 57:236–270CrossRefGoogle Scholar
  30. Le Gouis J, Bordes J, Ravel C, Heumez E, Faure S, Praud S, Galic N, Remoue C, Balfourier F, Allard V, Rousset M (2012) Genome-wide association analysis to identify chromosomal regions determining components of earliness in wheat. Theor Appl Genet 124:597–611PubMedCrossRefGoogle Scholar
  31. Lee SY, Ahn JH, Cha YS, Yun DW, Lee MC, Ko JC, Lee KS, Eun MY (2007) Mapping QTLs related to salinity tolerance of rice at the young seedling stage. Plant Breed 126:43–46CrossRefGoogle Scholar
  32. Li XB, Yan WG, Agrama H, Jia LM, Shen XH, Jackson A, Moldenhauer K, Yeater K, McClung A, Wu DX (2011) Mapping QTLs for improving grain yield using the USDA rice mini-core collection. Planta 234:347–361PubMedCrossRefGoogle Scholar
  33. Lijavetzky D, Cabezas JA, Ibanez A, Rodriguez V, Martinez-Zapater JM (2007) High throughput SNP discovery and genotyping in grapevine (Vitis vinifera L.) by combining a re-sequencing approach and SNPlex technology. BMC Genom 8:424CrossRefGoogle Scholar
  34. Lin HX, Zhu MZ, Yano M, Gao JP, Liang ZW, Su WA, Hu XH, Ren ZH, Chao DY (2004) QTLs for Na+ and K+ uptake of the shoots and roots controlling rice salt tolerance. Theor Appl Genet 108:253–260PubMedCrossRefGoogle Scholar
  35. Liu A, Burke JM (2006) Patterns of nucleotide diversity in wild and cultivated sunflower. Genetics 173:321–330PubMedCentralPubMedCrossRefGoogle Scholar
  36. Liu K, Muse SV (2005) PowerMarker: an integrated analysis environment for genetic marker analysis. Bioinformatics 21:2128–2129PubMedCrossRefGoogle Scholar
  37. Malysheva-Otto LV, Ganal MW, Ro¨der MS (2006) Analysis of molecular diversity, population structure and linkage disequilibrium in a worldwide survey of cultivated barley germplasm (Hordeum vulgare L.). BMC Genet 7:6PubMedCentralPubMedCrossRefGoogle Scholar
  38. Mather KA, Caicedo AL, Polato NR, Olsen KM, McCouch S, Purugganan MD (2007) The extent of linkage disequilibrium in rice (Oryza sativa L.). Genetics 177:2223–2232PubMedCentralPubMedCrossRefGoogle Scholar
  39. Mohammadi R, Mendioro MS, Diaz GQ, Gregorio GB, Singh RK (2013) Mapping quantitative trait loci associated with yield and yield components under reproductive stage salinity stress in rice (Oryza sativa L.). J Genet 92:433–443PubMedCrossRefGoogle Scholar
  40. Mohammadi-Nejad G, Arzani A, Rezai AM, Singh RK, Gregorio GB (2008) Assessment of rice genotypes for salt tolerance using microsatellite markers associated with the saltol QTL. Afr J Biotech 7:730–736Google Scholar
  41. Moradi F, Ismail AM, Gregorio GB, Egdane JA (2003) Salinity tolerance of rice during reproductive development and association with tolerance at the seedling stage. Ind J Plant Physiol 8:105–116Google Scholar
  42. Negrão S, Courtois B, Ahmadi N, Abreu I, Saibo N, Oliveira MM (2011) Recent updates on salinity stress in rice: from physiological to molecular responses. Crit Rev Plant Sci 30:329–377CrossRefGoogle Scholar
  43. Nei M, Takezaki N (1983) Estimation of genetic distances and phylogenetic trees from DNA analysis. Proceedings of the 5th world congress. Genet Appl Livest Prod 21:405–412Google Scholar
  44. Niu Y, Xu Y, Liu XF, Yang SX, Wei SP, Xie FT, Zhang YM (2013) Association mapping for seed size and shape traits in soybean cultivars. Mol Breed 31:785–794CrossRefGoogle Scholar
  45. Nordborg M, Borevitz JO, Bergelson J, Berry CC, Chory J, Hagenblad J, Kreitman M, Maloof JN, Noyes T, Oefner PJ, Stahl EA, Weigel D (2002) The extent of linkage disequilibrium in Arabidopsis thaliana. Nat Genet 30:190–193PubMedCrossRefGoogle Scholar
  46. Ordonez SA Jr, Silva J, Oard JH (2010) Association mapping of grain quality and flowering time in elite japonica rice germplasm. J Cereal Sci 51:337–343CrossRefGoogle Scholar
  47. Pandit A, Rai V, Bal S, Sinha S, Kumar V, Chauhan M, Gautam RK, Singh R, Sharma PC, Singh AK, Gaikwad K, Sharma TR, Mohapatra T, Singh NK (2010) Combining QTL mapping and transcriptome profiling of bulked RILs for identification of functional polymorphism for salt tolerance genes in rice (Oryza sativa L.). Mol Genet Genomics 284:121–136PubMedCrossRefGoogle Scholar
  48. Peakall R, Smouse PE (2006) GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295CrossRefGoogle Scholar
  49. Prasad SR, Bagali PG, Hittalmani S, Shashidhar HE (2000) Molecular mapping of quantitative trait loci associated with seedling tolerance of salt stress in rice (Oryza sativa L.). Curr Sci 78:162–164Google Scholar
  50. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959PubMedCentralPubMedGoogle Scholar
  51. Qadir M, Quillérou E, Nangia V, Murtaza G, Singh M, Thomas RJ, Noble AD (2014) Economics of salt-induced land degradation and restoration. Nat Resour Forum 38:282–295CrossRefGoogle Scholar
  52. Ren ZH, Gao JP, Li LG, Cai XL, Huang W, Chao DY, Zhu MZ, Wang ZY, Luan S, Lin HX (2005) A rice quantitative trait locus for salt tolerance encodes a sodium transporter. Nat Genet 37:1141–1146PubMedCrossRefGoogle Scholar
  53. Sabouri H, Rezai AM, Moumeni A, Kavousi A, Katouzi M, Sabouri A (2009) QTLs mapping of physiological traits related to salt tolerance in young rice seedlings. Biol Plant 53:657–662CrossRefGoogle Scholar
  54. Serra TS, Figueiredo DD, Cordeiro AM, Almeida DM, Lourenco T, Abreu IA, Sebastian A, Fernandes L, Contreras-Moreira B, Oliveira MM, Saibo NJM (2013) OsRMC, a negative regulator of salt stress response in rice, is regulated by two AP2/ERF transcription factors. Plant Mol Biol 82:439–455PubMedCrossRefGoogle Scholar
  55. Sun J, Zou DT, Luan FS, Zhao HW, Wang JG, Liu HL, Xie DW, Su DQ, Ma J, Liu ZL (2014a) Dynamic QTL analysis of the Na+ content, K+ content, and Na+/K+ ratio in rice roots during the field growth under salt stress. Biol Plant 58:689–696CrossRefGoogle Scholar
  56. Sun LJ, Zhang Q, Wu JX, Zhang LQ, Jiao XW, Zhang SW, Zhang ZG, Sun DY, Lu TG, Sun Y (2014b) Two rice authentic histidine phosphotransfer proteins, OsAHP1 and OsAHP2, mediate cytokinin signaling and stress responses in rice. Plant Physiol 165:335–345PubMedCentralPubMedCrossRefGoogle Scholar
  57. Takehisa H, Shimodate T, Fukuta Y, Ueda T, Yano M, Yamaya T, Kameya T, Sato T (2004) Identification of quantitative trait loci for plant growth of rice in paddy field flooded with salt water. Field Crops Res 89:85–95CrossRefGoogle Scholar
  58. Thomson MJ, Septiningsih EM, Suwardjo F, Santoso TJ, Silitonga TS, McCouch SR (2007) Genetic diversity analysis of traditional and improved Indonesian rice (Oryza sativa L.) germplasm using microsatellite markers. Theor Appl Genet 114:559–568PubMedCrossRefGoogle Scholar
  59. Thomson MJ, Ocampo M, Egdane J, Rahman MA, Sajise AG, Adorada DL, Tumimbang-Raiz E, Blumwald E, Seraj ZI, Singh RK, Gregorio GB, Ismail AM (2010) Characterizing the Saltol quantitative trait locus for salinity tolerance in rice. Rice 3:148–160CrossRefGoogle Scholar
  60. Vanniarajan C, Vinod KK, Pereira A (2012) Molecular evaluation of genetic diversity and association studies in rice (Oryza sativa L.). J Genet 91:1–11CrossRefGoogle Scholar
  61. Voorrips RE (2002) MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered 93:77–78PubMedCrossRefGoogle Scholar
  62. Wallender WW, Tanji KK (2011) Agricultural salinity assessment and management, 3rd edn. American Society of Civil Engineers (ASCE)Google Scholar
  63. Wang J, McClean P, Lee R, Goos R, Helms T (2008) Association mapping of iron deficiency chlorosis loci soybean (Glycine max L. Merr.) advanced breeding lines. Theor Appl Genet 116:777–787PubMedCrossRefGoogle Scholar
  64. Wang Z, Wang J, Bao Y, Wu Y, Zhang H (2011) Quantitative trait loci controlling rice seed germination under salt stress. Euphytica 178:297–307CrossRefGoogle Scholar
  65. Wang Z, Chen Z, Cheng J, Lai Y, Wang J, Bao Y, Huang J, Zhang H (2012a) QTL analysis of Na+ and K+ concentrations in roots and shoots under different levels of NaCl stress in rice (Oryza sativa L.). PLoS One 7:e51202PubMedCentralPubMedCrossRefGoogle Scholar
  66. Wang Z, Cheng J, Chen Z, Huang J, Bao Y, Wang J, Zhang H (2012b) Identification of QTLs with main, epistatic and QTL × environment interaction effects for salt tolerance in rice seedlings under different salinity conditions. Theor Appl Genet 125:807–815PubMedCrossRefGoogle Scholar
  67. Wang JG, Jiang TB, Zou DT, Zhao HW, Li Q, Liu HL, Zhou CJ (2014) Genetic diversity and genetic relationships of japonica rice varieties in Northeast Asia based on SSR markers. Biotechnol Biotec Equip 28:230–237CrossRefGoogle Scholar
  68. Wen WW, Mei HW, Feng FJ, Yu SB, Huang ZC, Wu JH, Chen L, Xu XY, Luo LJ (2009) Population structure and association mapping on chromosome 7 using a diverse panel of Chinese germplasm of rice (Oryza sativa L.). Theor Appl Genet 119:459–470PubMedCrossRefGoogle Scholar
  69. Wu Y, Hu Y, Xu G (2009) Interactive effects of potassium and sodium on root growth and expression of K/Na transporter genes in rice. Plant Growth Regul 57:271–280CrossRefGoogle Scholar
  70. Xu Y, Crouch J (2008) Marker-assisted selection in plant breeding: from publications to practice. Crop Sci 48:391–407CrossRefGoogle Scholar
  71. Xu YB, Beachell H, McCouch SR (2005) A marker-based approach to broadening the genetic base of rice in the USA. Crop Sci 44:1947–1959CrossRefGoogle Scholar
  72. Yan J, Shah T, Warburton ML, Buckler ES, McMullen MD, Crouch J (2009) Genetic characterization and linkage disequilibrium estimation of a global maize collection using SNP markers. PLoS One 4:e8451PubMedCentralPubMedCrossRefGoogle Scholar
  73. Yan JB, Warburton M, Crouch J (2011) Association mapping for enhancing maize (Zea mays L) genetic improvement. Crop Sci 51:433–449CrossRefGoogle Scholar
  74. Yeh FC, Yang RC, Boyle T (1999) POPGENE: microsoft window-based freeware for population genetic analysis. Version 1.31. University of Alberta, CanadaGoogle Scholar
  75. Yoshida S, Forno DA, Cock JH, Gomez KA (1976) Laboratory manual for physiological studies of rice. International Rice Research Institute, Manila, p 38Google Scholar
  76. Yu JM, Buckler ES (2006) Genetic association mapping and genome organization of maize. Curr Opin Biotechnol 17:1–6CrossRefGoogle Scholar
  77. Zang J, Sun Y, Wang Y, Yang J, Li F, Zhou YL, Zhu LH, Jessica R, Fotokian M, Xu JL, Li ZK (2008) Dissection of genetic overlap of salt tolerance QTLs at the seedling and tillering stages using backcross introgression lines in rice. Sci China C Life Sci 51:583–591PubMedCrossRefGoogle Scholar
  78. Zeng LH, Shannon MC (2000) Salinity effects on seedling growth and yield components of rice. Crop Sci 40:996–1003CrossRefGoogle Scholar
  79. Zhang P, Li J, Li X et al (2011) Population structure and genetic diversity in a rice core collection (Oryza sativa L.) investigated with SSR markers. PLoS One 6:e27565PubMedCentralPubMedCrossRefGoogle Scholar
  80. Zhang T, Qian N, Zhu X, Chen H, Wang S, Mei H, Zhang Y (2013) Variations and transmission of QTL alleles for yield and fiber qualities in upland cotton cultivars developed in China. PLoS One 8:e57220PubMedCentralPubMedCrossRefGoogle Scholar
  81. Zheng HL, Liu BW, Zhao HW, Wang JG, Liu HL, Sun J, Xing J, Zou DT (2014) Identification of QTLs for salt tolerance at the germination and early seedling stage using linkage and association analysis in japonica rice. Chin J Rice Sci 28:358–366 (in Chinese with an English Abstract) Google Scholar
  82. Zhu YL, Song QJ, Hyten DL et al (2003) Single-nucleotide polymorphisms in soybean. Genetics 63(3):1123–1134Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Hongliang Zheng
    • 1
  • Jingguo Wang
    • 1
  • Hongwei Zhao
    • 1
  • Hualong Liu
    • 1
  • Jian Sun
    • 1
  • Liying Guo
    • 1
  • Detang Zou
    • 1
    Email author
  1. 1.Rice Research Institute, College of AgricultureNortheast Agricultural UniversityHarbinChina

Personalised recommendations