Advertisement

Molecular Breeding

, 35:38 | Cite as

Flanking SNP markers for vicine–convicine concentration in faba bean (Vicia faba L.)

  • Hamid Khazaei
  • Donal M. O’Sullivan
  • Huw Jones
  • Nicholas Pitts
  • Mikko J. Sillanpää
  • Pertti Pärssinen
  • Outi Manninen
  • Frederick L. Stoddard
Short Communication

Abstract

The pyrimidine glycosides, vicine and convicine, limit the use of faba bean (Vicia faba L.) as food and feed. A single recessive gene, vc-, is responsible for a lowered vicine–convicine concentration. The biosynthetic pathway of these closely related compounds is not known, and the nearest available markers are several cM away from vc-. Improved markers would assist breeding and help to identify candidate genes. A segregating population of 210 F5 recombinant inbred lines was developed from the cross of Mélodie/2 (low vicine–convicine) × ILB 938/2 (normal vicine–convicine), and vicine–convicine concentrations were determined twice on each line. The population was genotyped with a set of 188 SNPs. A strong, single QTL for vicine–convicine concentration was identified on chromosome I, flanked by markers 1.0 cM away on one side and 2.6 cM on the other. The interval defined by these markers in the model species Medicago truncatula includes about 340 genes, but no candidate genes were identified. Further fine mapping should lead to the identification of tightly linked markers as well as narrowing down the search for candidate regulatory or biosynthetic genes which could underlie the vc- locus.

Keywords

Vicine and convicine Faba bean SNPs QTL Medicago truncatula 

Notes

Acknowledgments

H. Khazaei thanks the Emil Aaltonen Foundation (Emil Aaltosen Säätiö) and Niemi-säätiö for their financial support. The project was further supported by the University of Helsinki and the Niemi-Säätiö. We thank Markku Tykkyläinen, Sanna Peltola, and Sini Lindström for their assistance in the glasshouse work at the University of Helsinki. Kirsi Peltoniemi (Boreal Plant Breeding Ltd) is thanked for providing the spectrophotometric vicine–convicine results. Prof. Wolfgang Link (Georg-August-University, Göttingen, Germany) kindly provided the seeds of the parental lines.

Supplementary material

11032_2015_214_MOESM1_ESM.docx (15 kb)
Supplementary material 1 (DOCX 14 kb)
11032_2015_214_MOESM2_ESM.docx (15 kb)
Supplementary material 2 (DOCX 15 kb)
11032_2015_214_MOESM3_ESM.docx (15 kb)
Supplementary material 3 (DOCX 15 kb)
11032_2015_214_MOESM4_ESM.xlsx (16 kb)
Supplementary material 4 (XLSX 16 kb)

References

  1. Broman KW (2003) Mapping quantitative trait loci in the case of a spike in the phenotype distribution. Genetics 163:1169–1175PubMedCentralPubMedGoogle Scholar
  2. Churchill G, Doerge R (1994) Empirical threshold values for quantitative trait mapping. Genetics 138:963–971PubMedCentralPubMedGoogle Scholar
  3. Conneally PM, Edwarks JH, Kidd KK, Lalouel J-M, Morton NE, Ott J, White R (1985) Report of the committee on methods of linkage analysis and reporting. Cytogenet Cell Genet 40:356–359CrossRefPubMedGoogle Scholar
  4. Cottage A, Gostkiewicz K, Thomas JE, Borrows R, Torres AM, O’Sullivan DM (2012) Heterozygosity and diversity analysis using mapped SNPs in a faba bean inbreeding programme. Mol Breed 30:1799–1809CrossRefGoogle Scholar
  5. Crépon K, Marget P, Peyronnet C, Carrouée B, Arese P, Duc G (2010) Nutritional value of faba bean (Vicia faba L.) seeds for feed and food. Field Crops Res 115:329–339CrossRefGoogle Scholar
  6. Duc G, Sixdenier G, Lila M, Furstoss V (1989) Search of genetic variability for vicine and convicine content in Vicia faba L. A first report of a gene which codes for nearly zero-vicine and zero-convicine contents. Wageningen, The Netherlands (Pbs), pp 305–313Google Scholar
  7. Duc G, Marget P, Esnault R, Le Guen J, Bastianelli D (1999) Genetic variability for feeding value of faba bean seeds (Vicia faba L.): comparative chemical composition of isogenics involving zero-tannin and zero-vicine genes. J Agric Sci 133:185–196CrossRefGoogle Scholar
  8. Duc G, Marget P, Page D, Domoney C (2004) Facile breeding markers to lower contents of vicine and convicine in faba bean seeds and trypsin inhibitors in pea seeds. 4. International Workshop on Antinutritional Factors in Legume Seeds and Oilseeds, 2004/03/08-10, Toledo (ESP). EEAP, European association for animal production (FRA). In: Musquiz M, Hill GD, Cuadrado MM, Burbano C (eds) Recent advances of research in antinutritional factors in legume seeds and oilseeds. Wageningen Academic Publishers, The Netherlands, pp 281–285Google Scholar
  9. Gutierrez N, Avila CM, Duc G, Marget P, Suso MJ, Moreno MT, Torres AM (2006) CAPs markers to assist selection for low vicine and convicine contents in faba bean (Vicia faba L.). Theor Appl Genet 114:59–66CrossRefPubMedGoogle Scholar
  10. Jansen RC (1993) Interval mapping of multiple quantitative trait loci. Genetics 135:205–211PubMedCentralPubMedGoogle Scholar
  11. Kaur S, Kimber RBE, Cogan NOI, Materne M, Forster JW, Paull J (2014) SNP discovery and high-density genetic mapping in faba bean (Vicia faba L.) permits identification of QTLs for ascochyta blight resistance. Plant Sci 217–218:47–55CrossRefPubMedGoogle Scholar
  12. Khamassi K, Ben Jeddi F, Hobbs D, Irigoyen J, Stoddard F, O’Sullivan DM, Jones H (2013) A baseline study of vicine–convicine levels in faba bean (Vicia faba L.) germplasm. Plant Genet Resour 11:250–257CrossRefGoogle Scholar
  13. Khazaei H, O’Sullivan DM, Sillanpää MJ, Stoddard FL (2014) Use of synteny to identify candidate genes underlying QTL controlling stomatal traits in faba bean (Vicia faba L.). Theor Appl Genet 127:2371–2385CrossRefPubMedGoogle Scholar
  14. Kosambi DD (1943) The estimation of map distance from recombination values. Ann Eugen 12:172–175CrossRefGoogle Scholar
  15. Lander ES, Botstein D (1989) Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121:185–194PubMedCentralPubMedGoogle Scholar
  16. Lorieux M (2012) MapDisto: fast and efficient computation of genetic linkage map. Mol Breed 30:1231–1235CrossRefGoogle Scholar
  17. Semagn K, Babu R, Hearne S, Olsen M (2014) Single nucleotide polymorphism genotyping using Kompetitive Allele Specific PCR (KASP): overview of the technology and its application in crop improvement. Mol Breed 33:1–14CrossRefGoogle Scholar
  18. Sixdenier G, Cassecuelle F, Guillaumin L, Duc G (1996) Rapid spectrophotometric method for reduction of vicine and convicine in faba bean seed. FABIS Newslett 38(39):42–44Google Scholar
  19. van Ooijen JW (1992) Accuracy of mapping quantitative trait loci in autogamous species. Theor Appl Genet 84:803–811CrossRefPubMedGoogle Scholar
  20. Voorrips RE (2002) MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered 93:77–78CrossRefPubMedGoogle Scholar
  21. Wang S, Basten CJ, Zeng Z-B (2012) Windows QTL cartographer 2.5. Department of Statistics, North Carolina State University, Raleigh, NC. http://statgen.ncsu.edu/qtlcart/WQTLCart.htm
  22. Webb A, Cottage A, Wood T, Khamassi K, Hobbs D, Gostkiewicz K, White M, Khazaei H, Ali M, Street D, Stoddard FL, Maalouf F, Ogbonnaya F, Link W, Thomas J, O’Sullivan DM (2015) A SNP-based consensus genetic map for synteny-based trait targeting in faba bean (Vicia faba L.). Plant Biotechnol J (in press)Google Scholar
  23. Zeng Z-B (1993) Theoretical basis for separation of multiple linked gene effects in mapping quantitative trait loci. Proc Natl Acad Sci USA 90:10972–10976CrossRefPubMedCentralPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Hamid Khazaei
    • 1
  • Donal M. O’Sullivan
    • 2
  • Huw Jones
    • 3
  • Nicholas Pitts
    • 3
    • 4
  • Mikko J. Sillanpää
    • 5
  • Pertti Pärssinen
    • 6
  • Outi Manninen
    • 6
  • Frederick L. Stoddard
    • 1
  1. 1.Department of Agricultural SciencesUniversity of HelsinkiHelsinkiFinland
  2. 2.School of Agriculture, Policy and DevelopmentUniversity of ReadingReadingUK
  3. 3.National Institute of Agricultural BotanyCambridgeUK
  4. 4.School of Life SciencesUniversity of ManchesterManchesterUK
  5. 5.Department of Mathematical Sciences, Department of Biology and Biocenter OuluUniversity of OuluOuluFinland
  6. 6.Boreal Plant Breeding LtdJokioinenFinland

Personalised recommendations