Molecular Breeding

, Volume 34, Issue 4, pp 2119–2129 | Cite as

Fine-mapping of the apple scab resistance locus Rvi12 (Vb) derived from ‘Hansen’s baccata #2’

  • S. Padmarasu
  • D. J. Sargent
  • M. Jaensch
  • M. Kellerhals
  • S. Tartarini
  • R. Velasco
  • M. Troggio
  • A. Patocchi
Article

Abstract

Apple scab is a disease caused by the fungus Venturia inaequalis, which leads to significant economic losses in apple production especially in temperate regions. Breeding programmes are attempting to introgress scab resistance genes from wild apple into commercial cultivars to control the disease. Most of the commercially available scab-resistant varieties to date rely on the Rvi6 (Vf) resistance gene from Malus floribunda 821. The evolution of new pathotypes of V. inaequalis, which have caused the breakdown of Rvi6-based resistance, at least in northern Europe, highlights the need for the characterisation and pyramiding of scab resistance genes from different sources for durable disease resistance. In this study, the scab resistance gene Rvi12 from Malus baccata ‘Hansen’s baccata #2’ was confirmed as mapping to apple linkage group 12 in the cross ‘Gala’ × ‘Hansen’s baccata #2’ in an interval between SSR markers Hi02d05 and CH02h11b. Using the ‘Golden Delicious’ genome sequence, novel SSR markers and SNPs were identified in the Rvi12 mapping interval and mapped in an extended mapping population of 1,285 plants. Rvi12 was fine-mapped to an interval spanning 958 kb of the ‘Golden Delicious’ genome sequence. The 18 SNPs fine-mapped to the Rvi12 interval were screened in eight apple breeding founders, and for 16 of the 18 SNPs, the alleles linked in coupling with the Rvi12 resistance locus were found only in ‘Hansen’s baccata #2’. The SNPs identified will thus be useful for the efficient identification of apple genotypes carrying the Rvi12 resistance locus.

Keywords

SNP SSR Marker-assisted breeding Rosaceae Pome fruits Genomics 

References

  1. Bus VGM, Bassett HCM, Bowatte D, Chagné D, Ranatunga CA, Ulluwishewa D, Wiedow C, Gardiner SE (2010) Genome mapping of an apple scab, a powdery mildew and a woolly apple aphid resistance gene from open-pollinated mildew immune selection. Tree Genet Genomes 6:477–487CrossRefGoogle Scholar
  2. Bus V, Rikkerink E, Caffier V, Durel C, Plummers K (2011) Revision of nomenclature of the differential host-pathogen interactions of Venturia inaequalis and Malus. Annu Rev Phytopathol 49:391–413PubMedCrossRefGoogle Scholar
  3. Chen D, Ronald P (1999) A rapid DNA minipreparation method suitable for AFLP and other PCR applications. Plant Mol Biol Rep 17:53–57CrossRefGoogle Scholar
  4. Chevalier M, Lespinasse Y, Renaudin S (1991) A microscopic study of the different classes of symptoms coded by the Vf gene in Apple for resistance to scab (Venturia inaequalis). Plant Pathol 40:249–256CrossRefGoogle Scholar
  5. Crandall C (1926) Apple breeding at the University of Illinois. Illinois Agric Exp Stn Bull 275:341–600Google Scholar
  6. Dayton D, Williams E (1968) Independent genes in Malus for resistance to Venturia inaequalis. Proc Am Soc Hortic Sci 92:89–93Google Scholar
  7. Dayton D, Mowry J, Hough L, Bailey C, Williams E, Janick J, Emerson F (1970) ‘Prima’, an early fall apple with resistance to scab. Fruit Var Hortic Dig 24:20–22Google Scholar
  8. Dunemann F, Egerer J (2010) A major resistance gene from Russian apple ‘Antonovka’ conferring field immunity against apple scab is closely linked to the Vf locus. Tree Genet Genomes 6:627–633CrossRefGoogle Scholar
  9. Erdin N, Tartarini S, Broggini G, Gennari F, Sansavini S, Gessler C, Patocchi A (2006) Mapping of the apple scab-resistance gene Vb. Genome 49:1238–1245PubMedCrossRefGoogle Scholar
  10. Fernandez-Fernandez F, Evans K, Clarke J, Govan C, James C, Maric S, Tobutt K (2008) Development of an STS map of an interspecific progeny of Malus. Tree Genet Genomes 4:469–479CrossRefGoogle Scholar
  11. Gessler C, Pertot I (2012) Vf scab resistance of Malus. Trees Struct Funct 26:95–108CrossRefGoogle Scholar
  12. Gessler C, Patocchi A, Sansavini S, Tartarini S, Gianfranceschi L (2006) Venturia inaequalis resistance in apple. Crit Rev Plant Sci 25:473–503CrossRefGoogle Scholar
  13. Gygax M, Gianfranceschi L, Liebhard R, Kellerhals M, Gessler C, Patocchi A (2004) Molecular markers linked to the apple scab resistance gene Vbj derived from Malus baccata jackii. Theor Appl Genet 109:1702–1709PubMedCrossRefGoogle Scholar
  14. Hemmat M, Brown S, Aldwinckle H, Mehlenbacher S, Weeden N, Janick J (2003) Identification and mapping of markers for resistance to apple scab from ‘Antonovka’ and ‘Hansen’s baccata #2’. Acta Hortic 622:153–161Google Scholar
  15. Hough L, Shay J, Dayton D (1953) Apple scab resistance from Malus floribunda Sieb. Proc Am Soc Hortic Sci 62:341–347Google Scholar
  16. Joshi S, Schaart J, Groenwold R, Jacobsen E, Schouten H, Krens F (2011) Functional analysis and expression profiling of HcrVf1 and HcrVf2 for development of scab resistant cisgenic and intragenic apples. Plant Mol Biol 75:579–591PubMedCentralPubMedCrossRefGoogle Scholar
  17. Jung S, Ficklin SP, Lee T, Cheng CH, Blenda A, Zheng P, Yu J, Bombarely A, Cho I, Ru S, Evans K, Peace C, Abbott AG, Mueller LA, Olmstead MA, Main D (2013) The genome database for rosaceae (GDR): year 10 update. Nucleic Acids Res 42:1237–1244CrossRefGoogle Scholar
  18. Kellerhals M, Furrer B (1994) Approaches for breeding apples with durable disease resistance. Euphytica 77:31–35CrossRefGoogle Scholar
  19. Koller W, Wilcox W (2001) Evidence for the predisposition of fungicide-resistant isolates of Venturia inaequalis to a preferential selection for resistance to other fungicides. Phytopathology 91:776–781PubMedCrossRefGoogle Scholar
  20. Koller W, Parker D, Turechek W, Avila-Adame C, Cronshaw K (2004) A two-phase resistance response of Venturia inaequalis populations to the QoI fungicides kresoxim-methyl and trifloxystrobin. Plant Dis 88:537–544CrossRefGoogle Scholar
  21. Liebhard R, Gianfranceschi L, Koller B, Ryder C, Tarchini R, Van De Weg E, Gessler C (2002) Development and characterisation of 140 new microsatellites in apple (Malus × domestica Borkh.). Mol Breed 10:217–241CrossRefGoogle Scholar
  22. MacHardy W (1996) Apple Scab Biology, Epidemiology, and Management. APS Press, St. PaulGoogle Scholar
  23. Palumbi S, Baker C (1994) Contrasting population structure from nuclear intron sequences and mtDNA of humpback whales. Mol Biol Evol 11:426–435PubMedGoogle Scholar
  24. Parisi L, Lespinasse Y (1996) Pathogenicity of Venturia inaequalis strains of race 6 on apple clones (Malus sp). Plant Dis 80:1179–1183CrossRefGoogle Scholar
  25. Parisi L, Lespinasse Y, Guillaumes J, Kruger J (1993) A new race of Venturia inaequalis virulent to apples with resistance due to the Vf gene. Phytopathology 83:533–537CrossRefGoogle Scholar
  26. Parisi L, Fouillet V, Schouten HJ, Groenwold R, Laurens F, Didelot F, Evans K, Fischer C, Gennari F, Kemp H, Lateur M, Patocchi A, Thissen J, Tsipouridis C (2004) Variability of the pathogenicity of Venturia inaequalis in Europe. Acta Hortic 663:107–113Google Scholar
  27. Patocchi A, Walser M, Tartarini S, Broggini G, Gennari F, Sansavini S, Gessler C (2005) Identification by genome scanning approach (GSA) of a microsatellite tightly associated with the apple scab resistance gene Vm. Genome 48:630–636PubMedCrossRefGoogle Scholar
  28. Patocchi A, Frei A, Frey J, Kellerhals M (2009) Towards improvement of marker assisted selection of apple scab resistant cultivars: Venturia inaequalis virulence surveys and standardization of molecular marker alleles associated with resistance genes. Mol Breed 24:337–347CrossRefGoogle Scholar
  29. Silfverberg-Dilworth E (2004) Identification of HcrV2 as an apple scab resistance gene and characterisation of HcrVf control sequences. Dissertation, ETHGoogle Scholar
  30. Untergasser A, Cutcutache I, Koressaar T, Ye J, Faircloth B, Remm M, Rozen S (2012) Primer3—new capabilities and interfaces. Nucleic Acids Res 40:115–127CrossRefGoogle Scholar
  31. Velasco R, Zharkikh A, Affourtit J et al (2010) The genome of the domesticated apple (Malus × domestica Borkh.). Nat Genet 42:833–839PubMedCrossRefGoogle Scholar
  32. Voorrips R (2002) MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered 93:77–78PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • S. Padmarasu
    • 1
  • D. J. Sargent
    • 1
  • M. Jaensch
    • 2
  • M. Kellerhals
    • 2
  • S. Tartarini
    • 3
  • R. Velasco
    • 1
  • M. Troggio
    • 1
  • A. Patocchi
    • 2
  1. 1.Centre for Research and InnovationFondazione Edmund MachSan Michele all’adigeItaly
  2. 2.Institute for Plant Production Science (IPS)AgroscopeWädenswilSwitzerland
  3. 3.Department of Agricultural SciencesUniversity of BolognaBolognaItaly

Personalised recommendations