Molecular Breeding

, Volume 34, Issue 3, pp 1423–1435 | Cite as

Genetic relationships and structure among open-pollinated maize varieties adapted to eastern and southern Africa using microsatellite markers

  • Kassa Semagn
  • Cosmos Magorokosho
  • Veronica Ogugo
  • Dan Makumbi
  • Marilyn L. Warburton


Molecular characterization of open-pollinated maize varieties (OPVs) is fundamentally important in maize germplasm improvement. We investigated the extent of genetic differences, patterns of relationships, and population structure among 218 diverse OPVs widely used in southern and eastern Africa using the model-based population structure, analysis of molecular variance, cluster analysis, principal component analysis, and discriminant analysis. The OPVs were genotyped with 51 microsatellite markers and the fluorescent detection system of the Applied Biosystems 3730 Capillary Sequencer. The number of alleles detected in each OPV varied from 72 to 155, with an overall mean of 127.6. Genetic distance among the OPVs varied from 0.051 to 0.434, with a mean of 0.227. The different multivariate methods suggest the presence of 2–4 possible groups, primarily by maturity groups but also with overlapping variation between breeding programs, mega-environments, and specific agronomic traits. Nearly all OPVs in group 1 and group 2 belong to the intermediate-late and early maturity groups, respectively. Group 3 consisted of mainly intermediate maturing OPVs, while group 4 contained OPVs of different maturity groups. The OPVs widely used in eastern Africa either originated from the southern African maize breeding programs, or the majority of inbred lines used as parents by the two breeding programs in developing the OPVs might be genetically related. Some of the OPVs are much older than others, but they still did not show a clear pattern of genetic differentiation as compared with the recently developed ones, which is most likely due to recycling of the best parental lines in forming new OPVs.


Genetic diversity Microsatellite OPV Simple sequence repeat Sub-Saharan Africa 



This work was part of the “Drought Tolerant Maize for Africa” projects and is financially supported by Bill and Melinda Gates Foundation.

Supplementary material

11032_2014_126_MOESM1_ESM.xls (178 kb)
Supplementary material 1 (XLS 178 kb)
11032_2014_126_MOESM2_ESM.doc (102 kb)
Supplementary material 2 (DOC 101 kb)
11032_2014_126_MOESM3_ESM.doc (88 kb)
Supplementary material 3 (DOC 88 kb)


  1. Bänziger M, Meyer J (2002) Collaborative maize variety development for stress-prone environments in southern Africa. In: Cleveland DA, Soleri D (eds) Farmers, scientists, and plant breeding: integrating knowledge and practice. CABI, Oxon, pp 269–296CrossRefGoogle Scholar
  2. Bradbury PJ, Zhang Z, Kroon DE, Casstevens TM, Ramdoss Y, Buckler ES (2007) TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics 23:2633–2635PubMedCrossRefGoogle Scholar
  3. Dubreuil P, Warburton M, Chastanet M, Hoisington D, Charcosset A (2006) More on the introduction of temperate maize into Europe: large-scale bulk SSR genotyping and new historical elements. Maydica 51:281–291Google Scholar
  4. Dvornyk V, Long JR, Xiong DH, Liu PY, Zhao LJ, Shen H, Zhang YY, Liu YJ, Rocha-Sanchez S, Xiao P, Recker RR, Deng HW (2004) Current limitations of SNP data from the public domain for studies of complex disorders: a test for ten candidate genes for obesity and osteoporosis. BMC Genet 5:25CrossRefGoogle Scholar
  5. Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, Buckler ES, Mitchell SE (2011) A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS ONE 6:e19379PubMedCrossRefPubMedCentralGoogle Scholar
  6. Eschholz TW, Peter R, Stamp P, Hund A (2008) Genetic diversity of Swiss maize (Zea mays L. ssp. mays) assessed with individuals and bulks on agarose gels. Genet Resour Crop Evol 55:971–983CrossRefGoogle Scholar
  7. Etten JV, Lopez MRF, Monterroso LGM, Samayoa KMP (2008) Genetic diversity of maize (Zea mays L. ssp. mays) in communities of the western highlands of Guatemala: geographical patterns and processes. Genet Resour Crop Evol 55:303–317CrossRefGoogle Scholar
  8. Excoffier L, Smouse PE, Quattro JM (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA Restriction Data. Genetics 131:479–491PubMedPubMedCentralGoogle Scholar
  9. Gupta P, Balyan H, Edwards K, Isaac P, Korzun V, Roder M, Gautier MF, Joudrier P, Schlatter A, Dubcovsky J, De la Pena R, Khairallah M, Penner G, Hayden M, Sharp P, Keller B, Wang R, Hardouin J, Jack P, Leroy P (2002) Genetic mapping of 66 new microsatellite (SSR) loci in bread wheat. Theor Appl Genet 105:413–422PubMedCrossRefGoogle Scholar
  10. Hamblin MT, Warburton ML, Buckler ES (2007) Empirical comparison of simple sequence repeats and single nucleotide polymorphisms in assessment of maize diversity and relatedness. PLoS ONE 2:e1367PubMedCrossRefPubMedCentralGoogle Scholar
  11. Hamrick JL, Godt MJW (1997) Allozyme diversity in cultivated crops. Crop Sci 37:26–30CrossRefGoogle Scholar
  12. Idury RM, Cardon LR (1997) A simple method for automated allele binning in microsatellite markers. Genome Res 7:1104–1109PubMedPubMedCentralGoogle Scholar
  13. Le Hellard SP, Ballereau SPJ, Visscher PM, Torrance HS, Pinson J, Morris SW, Thomson ML, Semple CAM, Muir WJ, Blackwood DHR, Porteous DJ, Evans KL (2002) SNP genotyping on pooled DNAs: comparison of genotyping technologies and a semi automated method for data storage and analysis. Nucleic Acids Res 30:e74–e74PubMedCrossRefPubMedCentralGoogle Scholar
  14. Liu K, Muse SV (2005) PowerMarker: an integrated analysis environment for genetic marker analysis. Bioinformatics 21:2128–2129PubMedCrossRefGoogle Scholar
  15. Lu H, Bernardo R (2001) Molecular marker diversity among current and historical maize inbreds. Theor Appl Genet 103:613–617CrossRefGoogle Scholar
  16. Lu Y, Yan J, Guimaraes C, Taba S, Hao Z, Gao S, Chen S, Li J, Zhang S, Vivek B, Magorokosho C, Mugo S, Makumbi D, Parentoni S, Shah T, Rong T, Crouch J, Xu Y (2009) Molecular characterization of global maize breeding germplasm based on genome-wide single nucleotide polymorphisms. Theor Appl Genet 120:93–115PubMedCrossRefGoogle Scholar
  17. Narro LA, Duran JF, George MLC, Lucia Arcos A, Viviana Osorio K, Warburton ML (2012) Comparison of the performance of synthetic maize varieties created based on either genetic distance or general combining ability of the parents. Maydica 57:83–91Google Scholar
  18. Nei M (1978) Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89:583–590PubMedPubMedCentralGoogle Scholar
  19. Prasanna B, Pixley K, Warburton M, Xie CX (2010) Molecular marker-assisted breeding options for maize improvement in Asia. Mol Breed 26:339–356CrossRefGoogle Scholar
  20. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959PubMedPubMedCentralGoogle Scholar
  21. Reif JC, Xia XC, Melchinger AE, Warburton ML, Hoisington DA, Beck D, Bohn M, Frisch M (2004) Genetic diversity determined within and among CIMMYT maize populations of tropical, subtropical, and temperate germplasm by SSR markers. Crop Sci 44:326–334CrossRefGoogle Scholar
  22. Reif JC, Hamrit S, Heckenberger M, Schipprack W, Peter MH, Bohn M, Melchinger AE (2005) Genetic structure and diversity of European flint maize populations determined with SSR analyses of individuals and bulks. Theor Appl Genet 111:906–913PubMedCrossRefGoogle Scholar
  23. Rholf FJ (1993) NTSYS-pc, numerical taxonomy and multivariate analysis system. Exeter software, New YorkGoogle Scholar
  24. Rogers JS (1972) Measures of genetic similarity and genetic distance. Stud Genet VII Univ Tex Publ 7213:145–153Google Scholar
  25. Semagn K, Beyene Y, Makumbi D, Mugo S, Prasanna BM, Magorokosho C, Atlin G (2012a) Quality control genotyping for assessment of genetic identity and purity in diverse tropical maize inbred lines. Theor Appl Genet 125:1487–1501PubMedCrossRefGoogle Scholar
  26. Semagn K, Magorokosho C, Vivek BS, Makumbi D, Beyene Y, Mugo S, Prasanna BM, Warburton ML (2012b) Molecular characterization of diverse CIMMYT maize inbred lines from eastern and southern Africa using single nucleotide polymorphic markers. BMC Genomics 13:113. doi: 10.1186/1471-2164-13-113 PubMedCrossRefPubMedCentralGoogle Scholar
  27. Semagn K, Babu R, Hearne S, Olsen M (2014) Single nucleotide polymorphism genotyping using Kompetitive Allele Specific PCR (KASP): overview of the technology and its application in crop improvement. Mol Breed 33:1–14CrossRefGoogle Scholar
  28. Setimela PS, Vivek B, Banziger M, Crossa J, Maideni F (2007) Evaluation of early to medium maturing open pollinated maize varieties in SADC region using GGE biplot based on the SREG model. Field Crop Res 103:161–169CrossRefGoogle Scholar
  29. Shelton CA (2006) Quantitative PCR approach to SNP detection and linkage mapping in Caenorhabditis elegans. Biotechniques 41:583–588PubMedCrossRefGoogle Scholar
  30. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599PubMedCrossRefGoogle Scholar
  31. Van Inghelandt D, Melchinger A, Lebreton C, Stich B (2010) Population structure and genetic diversity in a commercial maize breeding program assessed with SSR and SNP markers. Theor Appl Genet 120:1289–1299PubMedCrossRefPubMedCentralGoogle Scholar
  32. Warburton ML, Xia X, Crossa J, Franco J, Melchinger AE, Frisch M, Bohn M, Hoisington D (2002) Genetic characterization of CIMMYT inbred maize lines and open pollinated populations using large scale fingerprinting methods. Crop Sci 42:1832–1840CrossRefGoogle Scholar
  33. Warburton ML, Ribaut JM, Franco J, Crossa J, Dubreuil P, Betran FJ (2005) Genetic characterization of 218 elite CIMMYT maize inbred lines using RFLP markers. Euphytica 142:97–106CrossRefGoogle Scholar
  34. Warburton ML, Reif JC, Frisch M, Bohn M, Bedoya C, Xia XC, Crossa J, Franco J, Hoisington D, Pixley K, Taba S, Melchinger AE (2008) Genetic diversity in CIMMYT nontemperate maize germplasm: landraces, open pollinated varieties, and inbred lines. Crop Sci 48:617–624CrossRefGoogle Scholar
  35. Warburton ML, Setimela P, Franco J, Cordova H, Pixley K, Banziger M, Dreisigacker S, Bedoya C, MacRobert J (2010) Toward a cost-effective fingerprinting methodology to distinguish maize open-pollinated varieties. Crop Sci 50:467–477CrossRefGoogle Scholar
  36. Wen W, Araus JL, Trushar S, Cairns J, Mahuku G, Banziger M, Torres JL, Sanchez C, Yan J (2011) Molecular characterization of a diverse maize inbred line collection and its potential utilization for stress tolerance improvement. Crop Sci 51:2569–2581CrossRefGoogle Scholar
  37. Wen W, Franco J, Chavez-Tovar VH, Yan J, Taba S (2012) Genetic characterization of a core set of a tropical maize race Tuxpeño for further use in maize improvement. PLoS ONE 7:e32626PubMedCrossRefPubMedCentralGoogle Scholar
  38. Xia XC, Reif JC, Hoisington DA, Melchinger AE, Frisch M, Warburton ML (2004) Genetic diversity among CIMMYT maize inbred lines investigated with SSR markers: I. Lowland tropical maize. Crop Sci 44:2230–2237CrossRefGoogle Scholar
  39. Xia XC, Reif JC, Melchinger AE, Frisch M, Hoisington DA, Beck D, Pixley K, Warburton ML (2005) Genetic diversity among CIMMYT maize inbred lines investigated with SSR markers: II. Subtropical, tropical midlatitude, and highland maize inbred lines and their relationships with elite U.S. and European maize. Crop Sci 45:2573–2582CrossRefGoogle Scholar
  40. Yan J, Shah T, Warburton ML, Buckler ES, McMullen MD, Crouch J (2009) Genetic characterization and linkage disequilibrium estimation of a global maize collection using SNP markers. PLoSOne 4:e8451CrossRefGoogle Scholar
  41. Zhou Gh, Kamahori M, Okano K, Chuan G, Harada K, Kambara H (2001) Quantitative detection of single nucleotide polymorphisms for a pooled sample by a bioluminometric assay coupled with modified primer extension reactions (BAMPER). Nucleic Acids Res 29:e93–e93PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Kassa Semagn
    • 1
  • Cosmos Magorokosho
    • 2
  • Veronica Ogugo
    • 1
  • Dan Makumbi
    • 1
  • Marilyn L. Warburton
    • 3
  1. 1.International Maize and Wheat Improvement Center (CIMMYT)NairobiKenya
  2. 2.CIMMYTHarareZimbabwe
  3. 3.Corn Host Plant Resistance Research UnitUnited States Department of Agriculture-Agricultural Research ServiceMississippi StateUSA

Personalised recommendations