Molecular Breeding

, 34:1 | Cite as

High-density mapping of a resistance gene to Ug99 from the Iranian landrace PI 626573

  • Jason D. Zurn
  • Maria Newcomb
  • Matthew N. Rouse
  • Yue Jin
  • Shiaoman Chao
  • Jinita Sthapit
  • Deven R. See
  • Ruth Wanyera
  • Peter Njau
  • J. Michael Bonman
  • Robert Brueggeman
  • Maricelis Acevedo
Article

Abstract

Managing wheat stem rust, caused by Puccinia graminis f. sp. tritici (Pgt), is imperative for the preservation of global food security. The most effective strategy is pyramiding several resistance genes into adapted wheat cultivars. A search for new resistance sources to Pgt race TTKSK resistance identified a spring wheat landrace, accession PI 626573, as a potentially novel source of resistance. A cross was made between LMPG-6, a susceptible spring wheat line, and PI 626573 and used to develop a recombinant inbred population to map the resistance. Bulk segregant analysis (BSA) of LMPG-6/PI 626573 F2 progeny determined resistance was conferred by a single dominant gene given the provisional designation SrWLR. The BSA identified nine microsatellite (SSR) markers on the long arm of chromosome 2B associated with the resistant phenotype. Fifteen polymorphic SSRs, including the nine identified in the BSA, were used to produce a linkage map of chromosome 2B, positioning SrWLR in an 8.8 cM region between the SSRs GWM47 and WMC332. This region has been reported to contain the wheat stem rust resistance genes Sr9 and SrWeb, the latter conferring resistance to Pgt race TTKSK. The 9,000 marker Illumina Infinium iSelect SNP assay was used to further saturate the SrWLR region. The cosegregating SNP markers IWA6121, IWA6122, IWA7620, IWA8295, and IWA8362 further delimited the SrWLR region distally to a 1.9 cM region. The present study demonstrates the iSelect assay to be an efficient tool to delimit the region of a mapping population and establish syntenic relationships between closely related species.

Keywords

Wheat Stem rust SrWLR iSelect Infinium SNP 

Supplementary material

11032_2014_81_MOESM1_ESM.xlsx (127 kb)
Supplementary material 1 Table S1: An online supplementary file containing the Infinium iSelect SNP map of all 25 linkage groups (XLSX 126 kb)

References

  1. Acevedo M, Newcomb M, Rouse M, Bockelman HE, Goates BJ, Jackson EW, Jin Y, Brown-Guedira G, Kilian A, Njau P, Singh D, Wanyera R, Bonman JM (2011) Looking for a needle in a haystack: screening of the international stem rust nursery in Kenya for new sources of resistance in spring wheat expo landraces. In: Proceedings of the Borlaug Global Rust Initiative 2011 Technical Workshop, St. Paul, Minnesota, pp 140–143Google Scholar
  2. Akhunov E, Nicolet C, Dvorak J (2009) Single nucleotide polymorphism genotyping in polyploidy wheat with the Illumina GoldenGate assay. Theor Appl Genet 119:507–517CrossRefPubMedCentralPubMedGoogle Scholar
  3. Alnemer LM, Seetan RI, Bassi FM, Chitraranjan C, Helsene A, Loree P, Goshn SB, Gu YQ, Luo M, Iqbal J, Lazo GR, Denton AM, Kianian SF (2013) Wheat Zapper: a flexible online tool for colinearity studies in grass genomes. Funct Integr Genomics 13:11–17CrossRefPubMedGoogle Scholar
  4. Bonman JM, Bockelman HE, Jin Y, Hijmans RJ, Gironella A (2007) Geographic distribution of stem rust resistance in wheat landraces. Crop Sci 47:1955–1963CrossRefGoogle Scholar
  5. Cavanagh C, Chao S, Wang S, Huang BE, Stephen S, Kiani S, Forrest K, Saintenac C, Brown-Guedira G, Akhunova A, See D, Bai G, Pumphrey M, Tomar L, Wong D, Kong S, Reynolds M, da Silva ML, Bockelman H, Talbert L, Anderson J, Dreisigacker S, Baenziger S, Carter A, Korzun V, Morrell P, Dubcovsky J, Morell M, Sorrells M, Hayden M, Akhunov E (2013) Genome-wide comparative diversity uncovers multiple targets of selection for improvement in hexaploid wheat landrace and cultivars. PNAS 110:8057–8062CrossRefPubMedCentralPubMedGoogle Scholar
  6. Dreisigacker S, Zhang P, Warburton ML, Skovmand B, Hoisington D, Melchinger AE (2005) Genetic diversity among and within CIMMYT wheat landrace accessions investigated with SSRs and implications for plant genetic resources management. Crop Sci 45:653–661CrossRefGoogle Scholar
  7. Dubcovsky J, Saintenac C, Zhang W, Li C, Cantu D, Akunova A, Liang H, Rouse M, Akunov E (2012) New approaches to rust resistance in wheat. In: Book of abstracts for Plant and Animal Genome XX Conference, San Diego, CA 159Google Scholar
  8. Endelman JB (2011) New algorithm improves fine structure of the barley consensus SNP map. BMC Genom 12:407CrossRefGoogle Scholar
  9. Fu B, Chen Y, Li N, Ma H, Kong Z, Zhang L, Jia H, Ma Z (2013) pmX: a recessive powdery mildew resistance gene at the Pm4 locus identified in wheat landrace Xiaohongpi. Theor Appl Genet 126:913–921CrossRefPubMedGoogle Scholar
  10. Gurung S, Mamidi S, Bonman JM, Jackson EW, Del Rio LE, Acevedo M, Mergoum M, Adhikari TB (2011) Identification of novel genomic regions associated with resistance to Pyrenophora tritici-repentis races 1 and 5 in spring wheat landraces using association analysis. Theor Appl Genet 123:1029–1041CrossRefPubMedGoogle Scholar
  11. Hale IL, Mamuya I, Singh D (2013) Sr31-Virulent races (TTKSK, TTKST, and TTTSK) of the wheat stem rust pathogen Puccinia graminis f. sp. tritici are present in Tanzania. Plant Dis 97:557CrossRefGoogle Scholar
  12. Hiebert CW, Fetch TG, Zegeye T (2010) Genetics and mapping of stem rust resistance to Ug99 in the wheat cultivar Webster. Theor Appl Genet 121:65–69CrossRefPubMedGoogle Scholar
  13. Hiebert CW, Fetch TG, Zegeye T, Thomas JB, Somers DJ, Humphreys DG, McCallum BD, Cloutier S, Singh D, Knott D (2011) Genetics and mapping of seedling resistance to Ug99 stem rust in Canadian wheat cultivars ‘Peace’ and ‘AC Cadillac’. Theor Appl Genet 122:143–149CrossRefPubMedGoogle Scholar
  14. Jin Y (2005) Races of Puccinia graminis Identified in the United States during 2003. Plant Dis 89:1125–1127CrossRefGoogle Scholar
  15. Jin Y, Singh RP, Ward RW, Wanyera R, Kinyua M, Njau P, Fetch T, Pretorius ZA, Yahyaoui A (2007) Characterization of seedling infection types and adult plant infection responses of monogenic Sr gene lines to race TTKSK of Puccinia graminis f. sp. tritici. Plant Dis 91:1096–1099CrossRefGoogle Scholar
  16. Knott DR (1990) Near-isogenic lines of wheat carrying genes for stem rust resistance. Crop Sci 30:901–905CrossRefGoogle Scholar
  17. Kolmer JA (2001) Early research on the genetics of Puccinia graminis and stem rust resistance in wheat in Canada and the United States. In: Peterson PD (ed) Stem rust of wheat: from ancient enemy to modern foe. American Phytopathological Society, St. Paul, MN, pp 51–82Google Scholar
  18. Kolmer JA, Jin Y, Long DL (2007) Wheat leaf and stem rust in the United States. Aust J Agric Res 58:631–638CrossRefGoogle Scholar
  19. Kosambi DD (1944) The estimation of map distances from recombination values. Ann Eugen 12:172–175CrossRefGoogle Scholar
  20. Leonard KJ, Szabo LJ (2005) Stem rust of small grains and grasses caused by Puccinia graminis. Mol Plant Path 6:99–111CrossRefGoogle Scholar
  21. Liu S, Zhang X, Pumphrey MO, Stack RW, Gill BS, Anderson JA (2006) Complex microlinearity among wheat, rice, and barley revealed by fine mapping of the genomic region harboring a major QTL for resistance to fusarium head blight in wheat. Funct Integr Genomics 6:83–89CrossRefPubMedGoogle Scholar
  22. McIntosh RA, Wellings CR, Park RF (1995) Wheat rusts: an atlas of resistance genes. CSIRO Publications, East Melbourne, AustraliaCrossRefGoogle Scholar
  23. Nazari K, Mafi M, Yahyaoui A, Singh RP, Park RF (2009) Detection of wheat stem rust (Puccinia graminis f. sp. tritici) race TTKSK (Ug99) in Iran. Plant Dis 93:317CrossRefGoogle Scholar
  24. Newcomb M, Acevedo M, Bockelman HE, Brown-Guedira G, Goates B, Jackson EW, Jin Y, Njau PN, Rouse MN, Singh D, Wanyera R, Bonman M (2013) Field resistance to the Ug99 race group of the stem rust pathogen in spring wheat landraces. Plant Dis 97:882–890CrossRefGoogle Scholar
  25. Periyannan S, Moore J, Bariana H, Deal KR, Wang X, Luo M, Huang L, Ayliffe M, Bansal U, Kong X, Dodds P, Dvorak J, Lagudah E (2013a) Cloning of a broad spectrum stem rust resistance gene in wheat. In: Book of abstracts for plant and animal genome XXI conference, San Diego, CA, p 215Google Scholar
  26. Periyannan S, Moore J, Ayliffe M, Bansal U, Wang X, Huang L, Deal K, Luo M, Kong X, Bariana H, Mago R, McIntosh R, Dodds P, Dvorak J, Lagudah E (2013b) The gene Sr33, an ortholog of barley Mla genes, encodes resistance to wheat stem rust race Ug99. Science 341:786–788CrossRefPubMedGoogle Scholar
  27. Peterson RF, Campbell AB, Hannah AE (1948) A diagrammatic scale for estimating rust intensity of leaves and stem of cereals. Can J Res Sect 26c:496–500Google Scholar
  28. Pretorius ZA, Singh RP, Wagoire WW, Payne TS (2000) Detection of virulence to wheat stem rust resistance gene Sr31 in Puccinia graminis f. sp. tritici in Uganda. Plant Dis 84:203CrossRefGoogle Scholar
  29. Reif JC, Zhang P, Dreisigacker S, Warburton ML, van Ginkel M, Hoisington D, Bohn M, Melchinger AE (2005) Wheat genetic diversity trends during domestication and breeding. Theor Appl Genet 110:859–864CrossRefPubMedGoogle Scholar
  30. Riede CR, Anderson JA (1996) Linkage of RFLP markers to and aluminum tolerance gene in wheat. Crop Sci 36:905–909CrossRefGoogle Scholar
  31. Röder MS, Korzun C, Wendehake K, Plaschke J, Tixier M, Leroy P, Ganal MW (1998) A microsatellite map of wheat. Genetics 149:2007–2023PubMedCentralPubMedGoogle Scholar
  32. Roelfs A (1982) Effects of barberry eradication on stem rust in the United States. Plant Dis 66:177–181CrossRefGoogle Scholar
  33. Roelfs AP (1985) Wheat and Rye stem rust. In: Roelfs AP, Bushnell WR (eds) The cereal rusts vol II: diseases, distribution, epidemiology and control. Academic Press, Florida, pp 3–27CrossRefGoogle Scholar
  34. Roelfs AP, Singh RP, Saari EE (1992) Diseases of wheat: concepts and methods of disease management. CIMMYT, Mexico City, MexicoGoogle Scholar
  35. Rouse MN, Wanyera R, Njau P, Jin Y (2011) Sources of resistance to stem rust race Ug99 in spring wheat germplasm. Plant Dis 95:762–766CrossRefGoogle Scholar
  36. Rouse MN, Nava IC, Chao S, Anderson JA, Jin Y (2012) Identification of markers linked to the race Ug99 effective stem rust resistance gene Sr28 in wheat (Triticum aestivum L.). Theor Appl Genet 125:877–885CrossRefPubMedGoogle Scholar
  37. Rowell JB (1984) Controlled infection by Puccinia graminis f. sp. tritici under artificial conditions. In: Bushnell WR, Roelfs AP (eds) The cereal rusts, origins, specificity, structure, and physiology, vol 1. Academic Press, Florida, USA, pp 292–332Google Scholar
  38. Saintenac C, Zhang W, Salcedo A, Rouse RN, Trick HN, Akhunov E, Dubcovsky J (2013) Identification of wheat gene Sr35 that confers resistance to Ug99 stem rust race group. Science 341:783–786CrossRefPubMedGoogle Scholar
  39. Singh RP, Hodson D, Huerta-Espino J, Jin Y, Njau P, Wanyera R, Herrera-Foessel S, Ward RW (2008) Will stem rust destroy the world’s wheat crop. Adv Agron 98:272–309Google Scholar
  40. Singh RP, Hodson DP, Huerta-Espino J, Jin Y, Bhavani S, Njau P, Herrera-Foessel S, Singh PK, Singh S, Govindan V (2011) The emergence of Ug99 races of the stem rust fungus is a threat to world wheat production. Annu Rev Phytopathol 49:465–481CrossRefPubMedGoogle Scholar
  41. Somers DJ, Isaac P, Edwards K (2004) A high-density microsatellite consensus map for bread wheat (Triticum aestivum L.). Theor Appl Genet 109:1105–1114CrossRefPubMedGoogle Scholar
  42. Song QJ, Shi JR, Singh S, Fickus EW, Costa JM, Lewis J, Gill BS, Ward R, Cregan PB (2005) Development and mapping of microsatellite (SSR) markers in wheat. Theor Appl Genet 110:550–560CrossRefPubMedGoogle Scholar
  43. Stakman EC, Stewart DM, Loegering WQ (1962) Identification of physiologic races of Puccinia graminis var. tritici. US Department of Agriculture Agricultural Research Service E-617Google Scholar
  44. Steemers FJ, Gunderson KL (2005) Company profile: Illumina, Inc. Pharmacogenomics 6:777–782CrossRefPubMedGoogle Scholar
  45. Stewart N, Via L (1993) A rapid CTAB DNA isolation technique useful for RAPD fingerprinting and other PCR applications. Biotechniques 14:748–749PubMedGoogle Scholar
  46. Tanksley SD, McCouch SR (1997) Seed banks and molecular maps: unlocking genetic potential from the wild. Science 277:1063–1066CrossRefPubMedGoogle Scholar
  47. Tsilo TJ, Jin Y, Anderson JA (2007) Microsatellite markers linked to stem rust resistance allele Sr9a in wheat. Crop Sci 47:2013–2020CrossRefGoogle Scholar
  48. Villa TCC, Maxted N, Scholten M, Ford-Lloyd B (2005) Defining and identifying crop landraces. Plant Genet Resour 3:373–384CrossRefGoogle Scholar
  49. Warburton ML, Crossa J, Franco J, Kazi M, Trethowan R, Rajaram S, Pfeiffer W, Zhang P, Dreisigacker S, van Ginkel M (2006) Bringing wild relatives back into the family: recovering genetic diversity in CIMMYT improved wheat germplasm. Euphytica 149:289–301CrossRefGoogle Scholar
  50. Wu Y, Close TJ, Lonardi S (2011) Accurate construction of consensus genetic maps via integer linear programming. IEEE/ACM Trans Comput Biol Bioinf 8:381–394CrossRefGoogle Scholar
  51. Würschum T, Langer SM, Longin CFH, Korzun V, Akhunov E, Ebmeyer E, Schachschneider R, Schacht J, Kazman E, Reif JC (2013) Population Structure, genetic diversity and linkage disequilibrium in elite winter wheat assessed with SNP and SSR markers. Theor Appl Genet. doi:10.1007/s00122-013-2065-1 Google Scholar
  52. Xiao M, Song F, Jiao J, Wang X, Xu H, Li H (2013) Identification of the gene Pm47 on chromosome 7BS conferring resistance to powdery mildew in the Chinese wheat landrace Hongyanglazi. Theor Appl Genet 126:1397–1403CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Jason D. Zurn
    • 1
  • Maria Newcomb
    • 2
  • Matthew N. Rouse
    • 2
  • Yue Jin
    • 2
  • Shiaoman Chao
    • 3
  • Jinita Sthapit
    • 4
  • Deven R. See
    • 5
  • Ruth Wanyera
    • 6
  • Peter Njau
    • 6
  • J. Michael Bonman
    • 7
  • Robert Brueggeman
    • 1
  • Maricelis Acevedo
    • 1
  1. 1.Department of Plant PathologyNorth Dakota State UniversityFargoUSA
  2. 2.USDA-ARS, Cereal Disease LaboratorySt. PaulUSA
  3. 3.USDA-ARS, Cereal Crops Research UnitFargoUSA
  4. 4.Department of Plant PathologyWashington State UniversityPullmanUSA
  5. 5.USDA-ARS, Wheat Genetics, Quality, Physiology and Disease Research UnitPullmanUSA
  6. 6.Kenya Agricultural Research InstituteNjoroKenya
  7. 7.USDA-ARS, Small Grains and Potato Germplasm Research UnitAberdeenUSA

Personalised recommendations