Molecular Breeding

, Volume 34, Issue 1, pp 13–30 | Cite as

Breeding quinoa (Chenopodium quinoa Willd.): potential and perspectives

  • Andrés Zurita-Silva
  • Francisco Fuentes
  • Pablo Zamora
  • Sven-Erik Jacobsen
  • Andrés R. SchwemberEmail author


Quinoa (Chenopodium quinoa Willd.) originated in the Andean region of South America; this species is associated with exceptional grain nutritional quality and is highly valued for its ability to tolerate abiotic stresses. However, its introduction outside the Andes has yet to take off on a large scale. In the Andes, quinoa has until recently been marginally grown by small-scale Andean farmers, leading to minor interest in the crop from urban consumers and the industry. Quinoa breeding programs were not initiated until the 1960s in the Andes, and elsewhere from the 1970s onwards. New molecular tools available for the existing quinoa breeding programs, which are critically examined in this review, will enable us to tackle the limitations of allotetraploidy and genetic specificities. The recent progress, together with the declaration of “The International Year of the Quinoa” by the Food and Agriculture Organization of the United Nations, anticipates a bright future for this ancient species.


Chenopodium quinoa Downy mildew Saponin Marker-assisted selection Marginal environments Stress tolerance 



Abscisic acid


Bacterial artificial chromosome


Expressed sequence tag


Food and Agriculture Organization of the United Nations


Gibberellic acid


The International Year of the Quinoa


Marker-assisted selection


Nucleolus organizer region


Non-transcribed spacers


Fundación para la Promoción e Investigación de Productos Andinos


Quantitative trait loci


Random amplified polymorphic DNA


Recombinant inbred line


Sequence read archive


Simple sequence repeat


Single nucleotide polymorphism



The authors thank José Manuel Villegas for his valuable contribution to this article. Funding from the TWAS-ICGEB exchange program ‘Tolerance strategies of quinoa plants under salt stress’ (CRP.PB/CHI06–01), from the EU IRSES program (PIRSES-GA-14 2008–230862) and Innova Chile (BioTecZA 06FC01IBC-71) to Dr. Zurita-Silva is gratefully appreciated.


  1. Adolf VI, Shabala S, Andersen MN, Razzaghi F, Jacobsen S-E (2012) Varietal differences of quinoa’s tolerance to saline conditions. Plant Soil 357(1–2):117–129Google Scholar
  2. Adolf VI, Jacobsen S-E, Shabala S (2013) Salt tolerance mechanisms in quinoa (Chenopodium quinoa Willd.). Environ Exp Bot 92:43–54Google Scholar
  3. Aellen P, Just T (1929) Key and synopsis of the American species of the genus Chenopodium L. Am Midland Nat 30:47–67Google Scholar
  4. Alandia S, Otazu V, Salas B (1979) Enfermedades. In: Tapia M, Gandarillas H, Alandia S, Cardozo A, Mujica A, Ortiz R, Otazu V, Rea J, Salas B, Sanabria E (eds) Quinua y Kaiñwa. Editorial IICA, Bogotá, pp 137–148Google Scholar
  5. Anabalón-Rodríguez L, Thomet-Isla M (2009) Comparative analysis of genetic and morphologic diversity among quinoa accessions (Chenopodium quinoa Willd.) of the South of Chile and highland accessions. J Plant Breed Crop Sci 1(5):210–216Google Scholar
  6. Andersen SD, Rasmussen L, Jensen CR, Mogensen VO, Andersen MN, Jacobsen S-E (1996) Leaf water relations and gas exchange of field grown Chenopodium quinoa Willd. during drought. In: Stolen O, Pithan K, Hill J (eds) Small Grain Cereals and Pseudocereals. Workshop at KVL, CopenhagenGoogle Scholar
  7. Aragón L, Gutiérrez W (1992) El mildiú en cuatro especies de Chenopodium. Fitopatologia 27:104–109Google Scholar
  8. Bendevis MA, Sun Y, Shabala S, Rosenqvist E, Liu F, Jacobsen S-E (2013) Differentiation of photoperiod induced ABA and soluble sugar responses of two quinoa (Chenopodium quinoa Willd.) cultivars. J Plant Growth Regul. doi: 10.1007/s00344-013-9406-9
  9. Bertero HD (2003) Response of developmental processes to temperature and photoperiod in quinoa (Chenopodium quinoa Willd.). Food Rev Int 19(1–2):87–97Google Scholar
  10. Bertero HD, De la Vega AJ, Correa G, Jacobsen S-E, Mujica A (2004) Genotype and genotype-by-environment interaction effects for grain yield and grain size of quinoa (Chenopodium quinoa Willd.) as revealed by pattern analysis of international multi-environment trials. Field Crops Res 89:299–318Google Scholar
  11. Bhargava A, Rana TS, Shukla S, Ohri D (2005) Seed protein electrophoresis of some cultivated and wild species of Chenopodium (Chenopodiaceae). Biol Plant 49(4):505–511Google Scholar
  12. Bhargava A, Shukla S, Ohri D (2006) Chenopodium quinoa. An Indian perspective. Ind Crops Prod 23:73–87Google Scholar
  13. Bois J, Winkel T, Lhomme J, Raffaillac J, Rocheteau A (2006) Response of some Andean cultivars of quinoa (Chenopodium quinoa Willd.) to temperature: effects on germination, phenology, growth and freezing. Eur J Agron 25:299–308Google Scholar
  14. Bonifacio A (1995). Interspecific and intergeneric hybridization in chenopod species thesis M.Sc., Provo, Utah Brigham Young University, 150 pGoogle Scholar
  15. Bosque H, Lemeur R, Van Damme P, Jacobsen S-E (2003) Ecophysiological analysis of drought and saline stress of quinoa (Chenopodium quinoa Willd.). Food Rev Int 19:111–119Google Scholar
  16. Burrieza HP, Koyro HW, Tosar LM, Kobayashi K, Maldonado S (2012) High salinity induces dehydrin accumulation in Chenopodium quinoa Willd. cv. Hualhuas embryos. Plant Soil 354:69–79Google Scholar
  17. Christensen SA, Pratt DB, Pratt C, Nelson PT, Stevens MR, Jellen EN, Coleman CE, Fairbanks DJ, Bonifacio A, Maughan PJ (2007) Assessment of genetic diversity in the USDA and CIP-FAO international nursery collections of quinoa (Chenopodium quinoa Willd.) using microsatellite markers. Plant Gen Res 5:82–95Google Scholar
  18. Christiansen JL, Jacobsen S-E, Jørgensen ST (2010) Photoperiodic effect on flowering and seed development in quinoa (Chenopodium quinoa Willd.). Acta Agric Scand 60(6):539–544Google Scholar
  19. Coles ND, Coleman CE, Christensen SA, Jellen EN, Stevens MR, Bonifacio A, Rojas-Beltran JA, Fairbanks DJ, Maughan PJ (2005) Development and use of an expressed sequenced tag library in quinoa (Chenopodium quinoa Willd.) for the discovery of single nucleotide polymorphisms. Plant Sci 168:439–447Google Scholar
  20. Costa-Tártara SM, Manifesto MM, Bramardi SJ, Bertero HD (2012) Genetic structure in cultivated quinoa (Chenopodium quinoa Willd.), a reflection of landscape structure in Northwest Argentina. Conserv Genet 13(4):1027–1038Google Scholar
  21. Danial D, Parlevliet J, Almekinders C, Thiele G (2007) Farmers’ participation and breeding for durable disease resistance in the Andean region. Euphytica 153:385–396Google Scholar
  22. Danielsen S, Munk L (2004) Evaluation of disease assessment methods in quinoa for their ability to predict yield loss caused by downy mildew. Crop Prot 23:219–228Google Scholar
  23. Danielsen S, Jacobsen S-E, Hockenhull J (2002) First report of downy mildew of quinoa caused by Peronospora farinosa f. sp. chenopodii in Denmark. Plant Dis 86:1175Google Scholar
  24. Danielsen S, Mercado VH, Ames T, Munk L (2004) Seed transmission of downy mildew (Peronospora farinosa f. sp chenopodii) in quinoa and effect of relative humidity on seedling infection. Seed Sci Technol 32:91–98Google Scholar
  25. Del Castillo C, Winkel T, Mahy G, Bizoux J-P (2007) Genetic structure of quinoa (Chenopodium quinoa Willd) from the Bolivian Altiplano as revealed by RAPD markers. Gen Res Crop Evol 54:897–905Google Scholar
  26. Dillehay TD, Rossen J, Andres TC, Williams DE (2007) Preceramic adoption of peanut, squash, and cotton in Northern Peru. Science 316(5833):1890–1893PubMedGoogle Scholar
  27. Fairbanks DJ, Burgener KW, Robison LR, Andersen WR, Ballon E (1990) Electrophoretic characterization of quinoa seed proteins. Plant Breed 104:190–195Google Scholar
  28. Fairbanks D, Waldrigues A, Ruas CF, Maughan PJ, Robison LR, Andersen WR, Riede CR, Pauley CS, Caetano LG, Arantes OM, Fungaro MHP, Vidotto MC, Jankevicius SE (1993) Efficient characterization of biological diversity using field DNA extraction and random amplified polymorphic DNA markers. Rev Brazil Genet 16:11–22Google Scholar
  29. Food and Agriculture Organization of the United Nations (FAO) (2010) The second report on the state of the world’s plant genetic resources for food and agriculture. Rome. ISBN 978-92-5-106534-1. 370 pGoogle Scholar
  30. Food and Agriculture Organization of the United Nations (FAO) (2011) Faostat for worldwide grown surface and production of quinoa.
  31. Food and Agriculture Organization of the United Nations (FAO) (2012) International Year of the Quinoa IYQ-2013.
  32. Fuentes F (2008) Mejoramiento genético de la quínoa. Agricultura del Desierto 4:71–89Google Scholar
  33. Fuentes F, Bhargava A (2011) Morphological analysis of Quinoa germplasm grown under lowland desert conditions. J Agron Crop Sci 197:124–134Google Scholar
  34. Fuentes F, Martínez E, Hinrichsen P, Jellen E, Maughan P (2009a) Assessment of genetic diversity patterns in Chilean quinoa (Chenopodium quinoa Willd.) germplasm using multiplex fluorescent microsatellite markers. Conserv Genet 10:369–377Google Scholar
  35. Fuentes F, Maughan P, Jellen E (2009b) Diversidad genética y recursos genéticos para el mejoramiento de la Quínoa (Chenopodium quinoa Willd). Rev Geogr Valpso 42:20–33.
  36. Fuentes F, Bazile D, Bhargava A, Martínez EA (2012) Implications of farmers’ seed exchanges for on-farm conservation of quinoa, as revealed by its genetic diversity in Chile. J Agric Sci 150(6):702–716Google Scholar
  37. Galwey NW (1993) The potential of quinoa as a multipurpose crop for agricultural diversification: a review. Ind Crops Prod 1:101–106Google Scholar
  38. Galwey NW, Risi J (1984) Development of the Andean grain crop quinoa for production in Britain. University of Cambridge Annual Report, Cambridge, UKGoogle Scholar
  39. Gandarillas H (1948) Efecto fisiológico de la saponina de la quinua en los animales. Rev Agric 4:52–56Google Scholar
  40. Gandarillas H (1969) Esterilidad genética y citoplásmica en la quinoa (Chenopodium quinoa). Turrialba 19(3):429–430Google Scholar
  41. Gandarillas H (1979) Genetica y origen. In: Tapia ME (ed) Quinoa y Kaniwa. Instituto Interamericano de Ciencias Agricolas, Bogotá, pp 45–64Google Scholar
  42. Gómez MB, Aguirre Castro P, Mignone C, Bertero HD (2011) Can yield potential be increased by manipulation of reproductive partitioning in quinoa (Chenopodium quinoa)? Evidence from gibberellic acid synthesis inhibition using Paclobutrazol. Funct Plant Biol 38(5):420–430Google Scholar
  43. Gómez-Caravaca AM, Iafelice G, Lavini A, Pulvento C, Caboni MF, Marconi E (2012) Phenolic compounds and saponins in quinoa samples (Chenopodium quinoa Willd.) grown under different saline and nonsaline irrigation regimens. J Agric Food Chem 60:4620–4627PubMedGoogle Scholar
  44. Gómez-Pando LR, Álvarez-Castro R, Eguiluz-De La Barra A (2010) Effect of salt stress on peruvian germplasm of Chenopodium quinoa Willd.: a promising crop. J Agron Crop Sci 196(5):391–396Google Scholar
  45. González JA, Bruno M, Valoy M, Prado FE (2011) Genotypic variation of gas exchange parameters and leaf stable carbon and nitrogen isotopes in ten Quinoa cultivars grown under drought. J Agron Crop Sci 197:81–93Google Scholar
  46. Hariadi Y, Marandon K, Tian Y, Jacobsen S-E, Shabala S (2011) Ionic and osmotic relations in quinoa (Chenopodium quinoa Willd.) plants grown at various salinity levels. J Exp Bot 62:185–193PubMedCentralPubMedGoogle Scholar
  47. Jacobsen S-E (1997) Adaptation of quinoa (Chenopodium quinoa) to Northern European agriculture: studies on developmental pattern. Euphytica 96:41–48Google Scholar
  48. Jacobsen S-E (1998) Developmental stability of quinoa under European conditions. Ind Crops Prod 7:169–174Google Scholar
  49. Jacobsen S-E (2003) The worldwide potential for quinoa (Chenopodium quinoa Willd.). Food Rev Int 19:167–177Google Scholar
  50. Jacobsen S-E, Bendevis MA (2013) Adaptation and scope for quinoa in Northern latitudes of Europe. In: FAO—In the International Year of the Quinua, Chapter 5.11. (in press)Google Scholar
  51. Jacobsen S-E, Jorgensen I, Stolen O (1994) Cultivation of quinoa (Chenopodium quinoa) under temperature climatic conditions in Denmark. J Agric Sci 122:47–52Google Scholar
  52. Jacobsen S, Hill J, Stolen O (1996) Stability of quantitative traits in quinoa (Chenopodium quinoa). Theor Appl Genet 93:110–116PubMedGoogle Scholar
  53. Jacobsen SE, Mujica A, Jensen CR (2003) The resistance of quinoa (Chenopodium quinoa Willd.) to adverse abiotic factors. Food Rev Int 19:99–109Google Scholar
  54. Jacobsen S-E, Monteros C, Christiansen JL, Bravo LA, Corcuera LJ, Mujica A (2005) Plant responses of quinoa (Chenopodium quinoa Willd.) to frost at various phenological stages. Eur J Agron 22:131–139Google Scholar
  55. Jacobsen S-E, Monteros C, Corcuera L, Bravo LA, Christiansen JL, Mujica A (2007) Frost resistance mechanisms in quinoa (Chenopodium quinoa Willd.). Eur J Agron 26:471–475Google Scholar
  56. Jacobsen S-E, Liu F, Jensen CR (2009) Does root-sourced ABA play a role for regulation of stomata under drought in quinoa (Chenopodium quinoa Willd.). Sci Hort 122:281–287Google Scholar
  57. Jacobsen S-E, Christiansen JL, Rasmussen J (2010) Weed harrowing and inter-row hoeing in organic grown quinoa (Chenopodium quinoa Willd.). Outlook on Agric 39:223–227Google Scholar
  58. Jacobsen S-E, Sørensen M, Pedersen SM, Weiner J (2013) Feeding the world: genetically modified crops versus agricultural biodiversity. Agron Sust Dev 33:651–662. doi: 10.1007/s13593-013-0138-9 Google Scholar
  59. Jarvis DE, Kopp OR, Jellen EN, Mallory MA, Pattee J, Bonifacio A, Coleman CE, Stevens MR, Fairbanks DJ, Maughan PJ (2008) Simple sequence repeat marker development and genetic mapping in quinoa (Chenopodium quinoa Willd.). J Genet 87:39–51PubMedGoogle Scholar
  60. Jellen EN, Kolano BA, Sederberg MC, Bonifacio A, Maughan PJ (2011) Chenopodium. In: Kole C (ed) Wild crop relatives: genomic and breeding resources. Springer, Berlin, pp 35–61Google Scholar
  61. Kenwright PA (1989) Breeding the Andean grain crop quinoa (Chenopodium quinoa) for cultivation in Britain. PhD thesis, University of CambridgeGoogle Scholar
  62. Kitz L, Geary B, Stevens M, Hooper G (2009) Downy mildew resistance in four breeding lines of quinoa. Phytopathology 99:S184Google Scholar
  63. Kolano BA (2004) Genome analysis of a few Chenopodium species. Ph.D. thesis, University of Silesia, Katowice, PolandGoogle Scholar
  64. Kolano B, Plucienniczak A, Kwasniewski M, Maluszynska J (2008) Chromosomal localization of a novel repetitive sequence in the Chenopodium quinoa genome. J Appl Genet 49(4):313–320PubMedGoogle Scholar
  65. Kolano B, Gardunia BW, Michalska M, Bonifacio A, Fairbanks D, Maughan PJ, Coleman CE, Stevens MR, Jellen EN, Maluszynskaa J (2011) Chromosomal localization of two novel repetitive sequences isolated from the Chenopodium quinoa Willd. genome. Genome 54(9):710–717PubMedGoogle Scholar
  66. Koyro HW, Eisa SS (2008) Effect of salinity on composition, viability and germination of seeds of Chenopodium quinoa Willd. Plant Soil 302:79–90Google Scholar
  67. Koziol M (1992) Chemical composition and nutritional evaluation of quinoa (Chenopodium quinoa Willd.). J Food Comp Anal 5:35–68Google Scholar
  68. Kuljanabhagavad T, Thongphasuk P, Chamulitrat W, Wink M (2008) Triterpene saponins from Chenopodium quinoa Willd. Phytochemistry 69:1919–1926PubMedGoogle Scholar
  69. Kumar A, Bhargava A, Shukla S, Singh HB, Ohri D (2006) Screening of exotic Chenopodium quinoa accessions for downy mildew resistance under mid-eastern conditions of India. Crop Prot 25:879–889Google Scholar
  70. Ma SS, Gong QQ, Bohnert HJH (2006) Dissecting salt stress pathways. J Exp Bot 57(5):1097–1107PubMedGoogle Scholar
  71. Martínez EA, Jorquera-Jaramillo C, Veas E, Chia E (2009a). El futuro de la quínoa en la región árida de Coquimbo: lecciones y escenarios a partir de una investigación sobre su biodiversidad en Chile para la acción con agricultores locales. Rev Geogr Valpso 42:95–111.
  72. Martínez EA, Veas E, Jorquera C, San Martin R, Jara P (2009b) Re-introduction of quinoa into arid Chile: cultivation of two lowland races under extremely low irrigation. J Agron Crop Sci 195:1–10Google Scholar
  73. Mason SL, Stevens MR, Jellen EN, Bonifacio A, Fairbanks DJ, Coleman CE, McCarty RR, Rasmussen AG, Maughan PJ (2005) Development and use of microsatellite markers for germplasm characterization in quinoa (Chenopodium quinoa Willd.). Crop Sci 45:1618–1630Google Scholar
  74. Mastebroek H, Limburg H, Gilles T, Marvin H (2000) Ocurrence of sapogenins in leaves and seeds of quinoa (Chenopodium quinoa Willd.). J Sci Food Agric 80:152–156Google Scholar
  75. Mastebroek H, van Loo E, Dolstra O (2002) Combining ability for seed yield traits of Chenopodium quinoa breeding lines. Euphytica 125:427–432Google Scholar
  76. Maughan PJ, Bonifacio A, Jellen E, Stevens M, Coleman C, Ricks M, Mason S, Jarvis D, Gardunia B, Fairbanks D (2004) A genetic linkage map of quinoa (Chenopodium quinoa) based on AFLP, RAPD and SSR markers. Theor Appl Genet 109:1188–1189PubMedGoogle Scholar
  77. Maughan PJ, Kolano BA, Maluszynska J, Coles ND, Bonifacio A, Rojas J, Coleman CE, Stevens MR, Fairbanks DJ, Perkinson SE, Jellen EN (2006) Molecular and cytological characterization of ribosomal RNA genes in Chenopodium quinoa and Chenopodium berlandieri. Genome 49:825–839PubMedGoogle Scholar
  78. Maughan PJ, Turner TB, Coleman CE, Elzinga DB, Jellen EN, Morales AJ, Udall JA, Fairbanks DJ, Bonifacio A (2009) Characterization of salt overly sensitive (SOS1) gene homoeologs in quinoa (Chenopodium quinoa Willd.). Genome 52:647–657PubMedGoogle Scholar
  79. Maughan PJ, Smith SM, Rojas-Beltran JA, Elzinga D, Raney JA, Jellen EN, Bonifacio A, Udall JA, Fairbanks DJ (2012) Single nucleotide polymorphism identification, characterization, and linkage mapping in quinoa. Plant Genome 5:114–125Google Scholar
  80. McElhinny E, Peralta E, Mazón N, Danial DL, Thiele G, Lindhout P (2007) Aspects of participatory plant breeding for quinoa in marginal areas of Ecuador. Euphytica 153:373–384Google Scholar
  81. Miranda M, Vega-Gálvez A, Martínez E, Lopez J, Rodriguez MJ, Henríquez K, Fuentes F (2012) Genetic diversity and comparison of physicochemical and nutritional characteristics of six quinoa (Chenopodium quinoa Willd.) genotypes cultivated in Chile. Ciencia Tecn Alim 32:835–843Google Scholar
  82. Miranda M, Vega-Gálvez A, Martinez EA, López J, Marín R, Aranda M, Fuentes F (2013) Influence of contrasting environment on seed composition of two quinoa genotypes: nutritional and functional properties. Chil J Agric Res 73:108–116Google Scholar
  83. Mujica A, Jacobsen S (2006) La quinua (Chenopodium quinoa Willd.) y sus parientes silvestres. Botánica Económica de los Andes Centrales, Universidad Mayor de San Andrés. La Paz 2006:449–457Google Scholar
  84. Nelson DC (1968) Taxonomy and origins of Chinopodium quinoa and Chenopodium nuttalliae. Ph.D. thesis, University of Indiana, BloomingtonGoogle Scholar
  85. Palomino G, Hernandez LT, Torres ED (2008) Nuclear genome size and chromosome analysis in Chenopodium quinoa and C. berlandieri subsp nuttalliae. Euphytica 164:221–230Google Scholar
  86. Pulvento C, Riccardi M, Lavini A, Iafelice G, Marconi E, d’Andria R (2012) Yield and quality characteristics of quinoa grown in open field under different saline and non-saline irrigation regimes. J Agron Crop Sci 198(4):254–263Google Scholar
  87. Rana TS, Narzary D, Ohri D (2010) Genetic diversity and relationships among some wild and cultivated species of Chenopodium L. (Amaranthaceae) using RAPD and DAMD methods. Curr Sci 98:840–846Google Scholar
  88. Razzaghi F, Ahmadi SH, Adolf VI, Jensen CR, Jacobsen SE, Andersen MN (2011) Water relations and transpiration of quinoa (Chenopodium quinoa Willd.) under salinity and soil drying. J Agron Crop Sci 197:348–360Google Scholar
  89. Razzaghi F, Plauborg F, Jacobsen SE, Jensen CR, Andersen MN (2012) Effect of nitrogen and water availability of three soil types on yield, radiation use efficiency and evapotranspiration in field-grown quinoa. Agric Water Man 109:20–29Google Scholar
  90. Repo-Carrasco R, Espinoza C, Jacobsen S-E (2003) Nutritional value and use of the Andean crops quinoa (Chenopodium quinoa) and kañiwa (Chenopodium pallidicaule). Food Rev Int 19:179–189Google Scholar
  91. Reynolds DJ (2009) Genetic dissection of triterpenoid saponin production in Chenopodium quinoa using microarray analysis. MSc thesis. Brigham Young University, Utah, United StatesGoogle Scholar
  92. Risi J (1986) Adaptation of the Andean grain crop quinoa (Chenopodium quinoa Willd.) for cultivation in Britain. Ph.D. thesis, University of CambridgeGoogle Scholar
  93. Risi J, Galwey NW (1984) The Chenopodium grains of the Andes: Inca crops for modern agriculture. Adv Appl Biol 10:145–216Google Scholar
  94. Rojas W, Valdivia R, Padulosi S, Pinto M, Soto JL, Alcocer E, Guzmán L, Estrada R, Apaza V, Bravo R (2009) From neglect to limelight: issues, methods and approaches in enhancing sustainable conservation and use of Andean grains in Bolivia and Peru. J Agric Rural Dev Trop Subtrop 92:87–117Google Scholar
  95. Ruas P, Bonifacio A, Ruas C, Fairbanks D, Andersen W (1999) Genetic relationship among 19 accessions of six species Chenopodium L., by Random Amplified Polymorphic DNA fragments (RAPD). Euphytica 105:25–32Google Scholar
  96. Ruiz-Carrasco K, Antognoni F, Coulibaly AK, Lizardi S, Covarrubias A, Martínez EA, Molina-Montenegro MA, Biondi S, Zurita-Silva A (2011) Variation in salinity tolerance of four lowland genotypes of quinoa (Chenopodium quinoa Willd.) as assessed by growth, physiological traits, and sodium transporter gene expression. Plant Physiol Biochem 49:1333–1341PubMedGoogle Scholar
  97. Sakamoto T, Matsuoka M (2004) Generating high-yielding varieties by genetic manipulation of plant architecture. Curr Opin Biotechnol 15:144–147PubMedGoogle Scholar
  98. Shabala S, Mackay A (2011) Ion transport in halophytes. Adv Bot Res 57:151–199Google Scholar
  99. Shabala L, Mackay A, YuTian Jacobsen S-E, Zhou D, Shabala S (2012) Oxidative stress protection and stomatal patterning as components of salinity tolerance mechanism in quinoa (Chenopodium quinoa Willd.). Physiol Plant 146(1):26–38PubMedGoogle Scholar
  100. Simmons NW (1971) The breeding system of Chenopodium quinoa. I. Male Sterility. Heredity 27:73–82Google Scholar
  101. Solíz-Guerrero JB, de Rodriguez DJ, Rodriguez-Garcia R, Angulo-Sanchez JL, Mendez-Padilla G (2002) Quinoa saponins: concentration and composition analysis. In: Janick J, Whipkey A (eds) Trends in new crops and new uses. ASHS Press, Alexandria, pp 110–114Google Scholar
  102. Spehar CR, Rocha JED (2010) Exploiting genotypic variability from low-altitude Brazilian Savannah-adapted Chenopodium quinoa. Euphytica 175:13–21Google Scholar
  103. Spehar CR, Santos RLD (2005) Agronomic performance of Quinoa selected in the Brazilian Savannah. Pesq Agrop Brasil 40(6):609–612Google Scholar
  104. Stevens MR, Coleman CE, Parkinson SE, Maughan PJ, Zhang H-B, Balzotti MR, Kooyman DL, Arumuganathan K, Bonifacio A, Fairbanks DJ, Jellen EN, Stevens JJ (2006) Construction of a quinoa (Chenopodium quinoa Willd.) BAC library and its use in identifying genes encoding seed storage proteins. Theor Appl Genet 112:1593–1600PubMedGoogle Scholar
  105. Stikic R, Glamoclija D, Demin M, Vucelic-Radovic B, Jovanovic Z, Milojkovic-Opsenica D, Jacobsen S-E, Milovanovic M (2012) Agronomical and nutritional evaluation of quinoa seeds (Chenopodium quinoa Willd.) as an ingredient in bread formulations. J Cereal Sci 55:132–138Google Scholar
  106. Testen AL, McKemy JM, Backman PA (2012) First report of quinoa downy mildew caused by Peronospora variabilis in the United States. Plant Dis 96:146Google Scholar
  107. Tewari JP, Boyetchko SM (1990) Occurrence of Peronospora farinosa f.sp. chenopodii on quinoa in Canada. Can Plant Dis Surv 70:127–128Google Scholar
  108. Trognitz B (2003) Prospects of breeding quinoa for tolerance to abiotic strees. Food Rev Int 19:129–137Google Scholar
  109. Urcelay C, Acho J, Joffre R (2010) Fungal root symbionts and their relationship with fine root proportion in native plants from the Bolivian Andean highlands above 3,700 m elevation. Mycorrhiza 21(5):323–330PubMedGoogle Scholar
  110. Vega-Gálvez A, Miranda M, Vergara J, Uribe E, Puente L, Martinez EA (2010) Nutrition facts and functional potential of quinoa (Chenopodium quinoa Willd.), an ancient Andean grain: a review. J Sci Food Agric 90:2541–2547PubMedGoogle Scholar
  111. Verma SC, Chauhan LS, Mathur RS (1964) Peronospora farinose (Fr.) on Chenopodium murale L.—a new record for India. Curr Sci 23:720–721Google Scholar
  112. Ward SM (1991) Male sterility in quinoa (Chenopodium quinoa Willd.). MS thesis, Colorado State University, Fort CollinsGoogle Scholar
  113. Ward SM (1998) A new source of restorable cytoplasmic male sterility. Euphytica 101:157–163Google Scholar
  114. Ward SM (2000) Allotetraploid segregation for single-gene morphological characters in quinoa (Chenopodium quinoa Willd.). Euphytica 116:11–16Google Scholar
  115. Ward SM, Johnson DL (1994) Recessive gene determining male-sterility in quinoa. J Hered 85:231–233Google Scholar
  116. Wilson HD (1980) Artificial hybridization among species of Chenopodium sect. Chenopodium. Syst Bot 5:253–263Google Scholar
  117. Wilson HD (1988a) Quinoa biosystematics I: domesticated populations. Econ Bot 42:461–477Google Scholar
  118. Wilson HD (1988b) Quinoa biosystematics II: free living populations. Econ Bot 42:47–494Google Scholar
  119. Wilson HD (1990) Quinoa and relatives (Chenopodium sect. Chenopodium subsect. Cellulata). Econ Bot 44:92–110Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Andrés Zurita-Silva
    • 1
  • Francisco Fuentes
    • 2
  • Pablo Zamora
    • 3
    • 4
  • Sven-Erik Jacobsen
    • 5
  • Andrés R. Schwember
    • 6
    Email author
  1. 1.Centro de Investigación IntihuasiInstituto de Investigaciones Agropecuarias (INIA)La SerenaChile
  2. 2.Facultad de Recursos Naturales RenovablesUniversidad Arturo PratIquiqueChile
  3. 3.Plant Sciences DepartmentUniversity of CaliforniaDavisUSA
  4. 4.Universidad de TarapacaAricaChile
  5. 5.Faculty of ScienceUniversity of CopenhagenTaastrupDenmark
  6. 6.Facultad de Agronomía e Ingeniería ForestalPontificia Universidad Católica de ChileSantiagoChile

Personalised recommendations