Advertisement

Molecular Breeding

, Volume 33, Issue 3, pp 709–720 | Cite as

Quantitative trait locus analysis of Verticillium wilt resistance in an introgressed recombinant inbred population of Upland cotton

  • Hui Fang
  • Huiping Zhou
  • Soum Sanogo
  • Alexander E. Lipka
  • David D. Fang
  • Richard G. Percy
  • Sidney E. Hughs
  • Don C. Jones
  • Michael A. GoreEmail author
  • Jinfa ZhangEmail author
Article

Abstract

Verticillium wilt (VW) of Upland cotton (Gossypium hirsutum L.) is caused by the soil-borne fungal pathogen Verticillium dahlia Kleb. The availability of VW-resistant cultivars is vital for control of this economically important disease, but there is a paucity of Upland cotton breeding lines and cultivars with a high level of resistance to VW. In general, G. barbadense L. (source of Pima cotton) is more VW-resistant than Upland cotton. However, the transfer of VW resistance from G. barbadense to Upland cotton is challenging because of hybrid breakdown in the F2 and successive generations of interspecific populations. We conducted two replicated greenhouse studies (tests 1 and 2) to assess the heritability of VW resistance to a defoliating V. dahliae isolate and identify genetic markers associated with VW resistance in an Upland cotton recombinant inbred mapping population that has stable introgression from Pima cotton. Disease ratings at the seedling stage on several different days after the first inoculation (DAI) in test 1, as well as the percentages of infected and defoliated leaves at 2 DAI in test 2, were found to be low to moderately heritable, indicating the importance of a replicated progeny test in selection for VW resistance. With a newly constructed linkage map consisting of 882 simple sequence repeat, single nucleotide polymorphism, and resistance gene analog–amplified fragment length polymorphism marker loci, we identified a total of 21 quantitative trait loci (QTLs) on 11 chromosomes and two linkage groups associated with VW resistance at several different DAIs in greenhouse tests 1 and 2. The markers associated with the VW resistance QTLs will facilitate fine mapping and cloning of VW resistance genes and genomics-assisted breeding for VW-resistant cultivars.

Keywords

Upland cotton Recombinant inbred line Verticillium wilt Disease resistance Quantitative trait loci 

Notes

Acknowledgments

The research was supported by the USDA-ARS, Cotton Incorporated, and New Mexico Agricultural Experiment Station. Mention of trade names or commercial products in this publication is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the USDA. The USDA is an equal opportunity provider and employer.

References

  1. Aguado A, Santos B, Blanco C, Romero F (2008) Study of gene effects for cotton yield and Verticillium wilt tolerance in cotton plant (Gossypium hirsutum L.). Field Crop Res 107:78–86CrossRefGoogle Scholar
  2. Anderson MJ, ter Braak CJF (2003) Permutation tests for multi-factorial analysis of variance. J Stat Comput Sim 73:85–113CrossRefGoogle Scholar
  3. Barrow JR (1970) Heterozygosity in inheritance of Verticillium wilt tolerance in cotton. Phytopathology 60:301–303CrossRefGoogle Scholar
  4. Barrow JR (1973) Genetics of Verticillium tolerance in cotton. In: Ranney CD (ed) Verticillium wilt of cotton. US Agric Res Serv South Reg, S-19:89–97Google Scholar
  5. Bassett D (1974) Resistance of cotton cultivars to verticillium wilt and its relationship to yield. Crop Sci 14:864–867CrossRefGoogle Scholar
  6. Bell AA (1992) Verticillium wilt. In: Hillocks RJ (ed) Cotton diseases. CAB International, Wallingford, pp 87–126Google Scholar
  7. Blasingame D, Patel MV (2011) Cotton disease loss estimate committee report. In: Proceedings of Beltwide Cotton Conference, Atlanta, pp 306–308Google Scholar
  8. Blenda A, Fang DD, Rami JM, Garsmeur O, Luo M, Lacape JM (2012) A high density consensus genetic map of tetraploid cotton that integrates multiple component maps through molecular marker redundancy check. PLoS One 7:e45739CrossRefPubMedCentralPubMedGoogle Scholar
  9. Bolek Y, El-Zik KM, Pepper AE, Bell AA, Magill CW, Thaxton PM, Reddy OUK (2005) Mapping of Verticillium wilt resistance genes in cotton. Plant Sci 168:1581–1590CrossRefGoogle Scholar
  10. Cantrell RG, Davis DD (2000) Registration of NM24016, an interspecific-derived cotton genetic stock. Crop Sci 40:1208Google Scholar
  11. Churchill GA, Doerge RW (1994) Empirical threshold values for quantitative trait mapping. Genetics 138:963–971PubMedGoogle Scholar
  12. DeVay JE, Weir BL, Wakeman RJ, Stapleton JJ (1997) Effects of Verticillium dahliae infection of cotton plants (Gossypium hirsutum) on potassium levels in leaf petioles. Plant Dis 81:1089–1092CrossRefGoogle Scholar
  13. Devey M, Roose M (1987) Genetic analysis of Verticillium wilt tolerance in cotton using pedigree data from three crosses. Theor Appl Genet 74:162–167CrossRefPubMedGoogle Scholar
  14. Dunnett CW (1955) A multiple comparison procedure for comparing several treatments with a control. J Am Stat Assoc 50:1096–1121CrossRefGoogle Scholar
  15. Fang DD, Yu JZ (2012) Addition of 455 microsatellite marker loci to the high-density Gossypium hirsutum TM-1 x G. barbadense 3-79 genetic map. J Cotton Sci 16:229–248Google Scholar
  16. Fang H, Zhou H, Sanogo S, Flynn R, Percy RG, Hughs SE, Ulloa M, Jones DC, Zhang J (2013) Quantitative trait locus mapping for Verticillium wilt resistance in a backcross inbred line population of cotton (Gossypium hirsutum × Gossypium barbadense) based on RGA-AFLP analysis. Euphytica 194:79–91Google Scholar
  17. Gore MA, Percy RG, Zhang J, Fang DD, Cantrell RG (2012) Registration of the TM-1/NM24016 cotton recombinant inbred mapping population. J Plant Reg 6:124–127Google Scholar
  18. Gore M A, Fang DD, Poland, JA, Zhang J, Percy RG, Fang DD, Cantrell RG, Thyssen G, Lipka AE (2013) Linkage map construction and QTL analysis of agronomic and fiber quality traits in cotton. Plant Genome (in press)Google Scholar
  19. Hayter AJ (1986) The maximum familywise error rate of Fisher’s least significant difference test. J Am Stat Assoc 81:1000–1004CrossRefGoogle Scholar
  20. Holland JB, Nyquist WE, Cervantes-Martínez CT (2003) Estimating and interpreting heritability for plant breeding: an update. Plant Breed Rev 22:9–112Google Scholar
  21. Jiang F, Zhao J, Zhou L, Guo WZ, Zhang TZ (2009) Molecular mapping of Verticillium wilt resistance QTL clustered on chromosomes D7 and D9 in Upland cotton. Sci China Ser C Life Sci 52:872–884CrossRefGoogle Scholar
  22. Kohel R, Richmond T, Lewis C (1970) Texas Marker-1. Description of a genetic standard for Gossypium hirsutum L. Crop Sci 10:670–671CrossRefGoogle Scholar
  23. Kosambi DD (1944) The estimation of map distances from recombination values. Ann Eugen 12:172–175CrossRefGoogle Scholar
  24. Li H, Ye G, Wang J (2007) A modified algorithm for the improvement of composite interval mapping. Genetics 175:361–374CrossRefPubMedGoogle Scholar
  25. McCouch S, Cho Y, Yano M, Paul E, Blinstrub M, Morishima H, Kinoshita T (1997) Report on QTL nomenclature. Rice Genet Newslett 14:11–13Google Scholar
  26. Mert M, Kurt S, Gencer O, Akiscan Y, Boyaci K, Tok FM (2005) Inheritance of resistance to Verticillium wilt (Verticillium dahliae) in cotton (Gossypium hirsutum L.). Plant Breed 124:102–104CrossRefGoogle Scholar
  27. Ning ZY, Zhao R, Chen C, Ai NJ, Zhang X, Zhao J, Mei HX, Wang P, Guo WZ, Zhang TZ (2013) Molecular tagging of a major QTL for broad-spectrum resistance to Verticillium wilt in Upland cotton cultivar Prema. Crop Sci 53:2304–2312Google Scholar
  28. Niu C, Lu Y, Yuan Y, Percy R, Ulloa M, Zhang JF (2011) Mapping resistance gene analogs (RGAs) in cultivated tetraploid cotton using RGA-AFLP analysis. Euphytica 181:65–76CrossRefGoogle Scholar
  29. Paplomatas E, Bassett D, Broome J, DeVay J (1992) Incidence of Verticillium wilt and yield losses of cotton cultivars (Gossypium hirsutum) based on soil inoculum density of Verticillium dahliae. Phytopathology 82:1417–1420CrossRefGoogle Scholar
  30. Percy RG, Cantrell RG, Zhang JF (2006) Genetic variation for agronomic and fiber properties in an introgressed recombinant inbred population of cotton. Crop Sci 46:1311–1317CrossRefGoogle Scholar
  31. Pullman GS, DeVay JE (1982) Epidemiology of Verticillium wilt of cotton: effects of disease development on plant phenology and lint yield. Phytopathology 72:554–559CrossRefGoogle Scholar
  32. Roberts CL, Staten G (1972) Heritability of Verticillium wilt tolerance in crosses of American Upland cotton. Crop Sci 12:63–66CrossRefGoogle Scholar
  33. SAS Institute (2012) The SAS system for Windows. Release 9.3. SAS Inst, Cary, NCGoogle Scholar
  34. Smith CW, Cothren JT (1999) Cotton: origin, history, technology, and production. Wiley, New YorkGoogle Scholar
  35. USDA-NASS (2013) Crop Production 2012 Summary. January 2013. http://usda01.library.cornell.edu/usda/current/CropProdSu/CropProdSu-01-11-2013.pdf. Accessed 17 March 2013
  36. van Ooijen JW (2006) JoinMap® 4.0, Software for the calculation of genetic linkage maps in experimental populations. Kyazma B.V, WageningenGoogle Scholar
  37. van Ooijen JW (2009) MapQTL® 6, Sofware for the mapping of quantitative trait loci in experimental populations of diploid species. Kyazma B.V, WageningenGoogle Scholar
  38. Verhalen LM, Brinkerhorf LA, Fun KC, Morrison WC (1971) A quantitative genetic study of Verticillium wilt resistance among selected lines of Upland cotton. Crop Sci 11:407–412CrossRefGoogle Scholar
  39. Wang HM, Lin ZX, Zhang XL, Chen W, Guo XP, Nie YC, Li YH (2008) Mapping and quantitative trait loci analysis of Verticillium wilt resistance genes in cotton. J Integr Plant Biol 50:174–182CrossRefPubMedGoogle Scholar
  40. Wheeler TA, Woodward JE (2011) Affect of Verticillium wilt on cultivars in the Southern High Plains of Texas. In: Proceedings of Beltwide Cotton Conference, Atlanta, 4–7 Jan 2011, pp 293–305Google Scholar
  41. Xu S (2003) Theoretical basis of the Beavis effect. Genetics 165:2259–2268PubMedGoogle Scholar
  42. Yang C, Guo WZ, Li GY, Gao F, Lin SS, Zhang TZ (2008) QTLs mapping for Verticillium wilt resistance at seedling and maturity stages in Gossypium barbadense L. Plant Sci 174:290–298CrossRefGoogle Scholar
  43. Zhang JF, Percy RG (2007) Improving Upland cotton by introducing desirable genes from Pima cotton. World Cotton Res Conf (http://wcrc.confex.com/wcrc/2007/techprogram/P1901.HTM)
  44. Zhang JF, Stewart JM (2000) Economical and rapid method for extracting cotton genomic DNA. J Cotton Sci 4:193–201Google Scholar
  45. Zhang JF, Lu Y, Adragna H, Hughs E (2005a) Genetic improvement of New Mexico Acala cotton germplasm and their genetic diversity. Crop Sci 45:2363–2373CrossRefGoogle Scholar
  46. Zhang JF, Lu Y, Cantrell RG, Hughs E (2005b) Molecular marker diversity and field performance in commercial cotton cultivars evaluated in the Southwestern USA. Crop Sci 45:1483–1490CrossRefGoogle Scholar
  47. Zhang JF, Yuan YL, Niu C, Hinchliffe DJ, Lu YZ, Yu SX, Percy RG, Ulloa M, Cantrell RG (2007) AFLP-RGA markers in comparison with RGA and AFLP in cultivated tetraploid cotton. Crop Sci 47:180–187CrossRefGoogle Scholar
  48. Zhang JF, Sanogo S, Flynn R, Baral JB, Bajaj S, Hughs SE, Percy RG (2012) Germplasm evaluation and transfer of Verticillium wilt resistance from Pima (Gossypium barbadense) to Upland cotton (G. hirsutum). Euphytica 187:147–160CrossRefGoogle Scholar
  49. Zhang JF, Fang H, Zhou HP, Sanogo S (2013) Genetics, breeding, and marker-assisted selection for Verticillium wilt resistance in cotton. Crop Sci (Accepted upon revision)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Hui Fang
    • 1
  • Huiping Zhou
    • 1
  • Soum Sanogo
    • 2
  • Alexander E. Lipka
    • 3
  • David D. Fang
    • 4
  • Richard G. Percy
    • 5
  • Sidney E. Hughs
    • 6
  • Don C. Jones
    • 7
  • Michael A. Gore
    • 8
    Email author
  • Jinfa Zhang
    • 1
    Email author
  1. 1.Department of Plant and Environmental SciencesNew Mexico State UniversityLas CrucesUSA
  2. 2.Department of Entomology, Plant Pathology and Weed ScienceNew Mexico State UniversityLas CrucesUSA
  3. 3.Institute for Genomic DiversityCornell UniversityIthacaUSA
  4. 4.Cotton Fiber Bioscience Research Unit, Southern Regional Research CenterUSDA-ARSNew OrleansUSA
  5. 5.Crop Germplasm Research Unit, Southern Plains Agricultural Research CenterUSDA-ARSCollege StationUSA
  6. 6.Southwest Cotton Ginning Research LaboratoryUSDA-ARSMesilla ParkUSA
  7. 7.Cotton IncorporatedCaryUSA
  8. 8.Department of Plant Breeding and GeneticsCornell UniversityIthacaUSA

Personalised recommendations