Molecular Breeding

, Volume 33, Issue 4, pp 961–973 | Cite as

Identification of quantitative trait loci for bruchid (Caryedon serratus Olivier) resistance components in cultivated groundnut (Arachis hypogaea L.)

  • Suvendu Mondal
  • Ashok B. Hadapad
  • Poonam A. Hande
  • Anand M. Badigannavar
Article

Abstract

Groundnut bruchid (Caryedon serratus Olivier) is a major storage insect pest that significantly lowers the quality and market acceptance of the produce. Screening for resistance against groundnut bruchid in field conditions is difficult due to the variation in environmental factors and possible occurrence of biotypes. Hence, identification of tightly linked markers or quantitative trait loci (QTLs) is needed for selection and pyramiding of resistance genes for durable resistance. A population of recombinant inbred lines derived from a cross between VG 9514 (resistant) and TAG 24 (susceptible) was screened for five component traits of bruchid resistance in 2 years. The same population was genotyped with 221 polymorphic marker loci. A genetic linkage map covering 1,796.7 cM map distance was constructed with 190 marker loci in cultivated groundnut. QTL analysis detected thirteen main QTLs for four components of bruchid resistance in nine linkage groups and 31 epistatic QTLs for total developmental period (TDP). Screening in 2 years for bruchid resistance identified two common main QTLs. The common QTL for TDP, qTDP-b08, explained 57–82 % of phenotypic variation, while the other common QTL for adult emergence, qAE2010/11-a02, explained 13–21 % of phenotypic variation. Additionally, three QTLs for TDP, adult emergence and number of holes and one QTL for pod weight loss were identified which explained 14–39 % of phenotypic variation. This is the first report on identification of multiple main and epistatic loci for bruchid resistance in groundnut.

Keywords

Arachis hypogaea L. Bruchid resistance Linkage map QTL mapping Recombinant inbred line 

Supplementary material

11032_2013_11_MOESM1_ESM.xls (86 kb)
Table S1: Details of polymorphic marker loci used to construct the genetic linkage map in cultivated groundnut in this study. (XLS 85 kb)
11032_2013_11_MOESM2_ESM.xls (27 kb)
Table S2: Details of epistatic (additive x additive) QTLs for total developmental period (TDP) of groundnut bruchid resistance. (XLS 27 kb)

References

  1. Azeemoddin G (1993) Post harvest technology of oilseeds. In: National seminar on “oilseeds research and development in India: status and strategies.” 2–5 August, 1993, Hyderabad, p 231Google Scholar
  2. Blair MW, Munoz C, Garza R, Cardona C (2006) Molecular mapping of genes for resistance to the bean pod weevil (Apion godmani Wagner) in common bean. Theor Appl Genet 112:913–923PubMedCrossRefGoogle Scholar
  3. Blair MW, Munoz C, Burndia HF, Flower J, Bueno JM, Cardona C (2010) Genetic mapping of microsatellite markers around the arcelin bruchid resistance locus in common bean. Theor Appl Genet 121:393–402PubMedCentralPubMedCrossRefGoogle Scholar
  4. Burton GM, Devane EM (1953) Estimating heritability in tall Fescue from replication clonal material. Agron J 45:478–481CrossRefGoogle Scholar
  5. Byrne OM, Hardie DC, Khan T, Yan G (2008) Genetic analysis of pod and seed resistance to pea weevil in a Pisum sativum × P. fulvum interspecific cross. Aust J Agric Res 59:854–862CrossRefGoogle Scholar
  6. Chen HM, Ku HM, Schafleitner R, Bains TS, Kuo CG, Liu CA, Nair RM (2013) The major quantitative trait locus for mungbean yellow mosaic Indian virus resistance is tightly linked in repulsion phase to the major bruchid resistance locus in a cross between mungbean [Vigna radiata (L.) Wilczek] and its wild relative Vigna radiata ssp. sublobata. Euphytica 192:205–216CrossRefGoogle Scholar
  7. Cunningham DC, Walsh KB (2002) Establishment of the peanut bruchid (Caryedon serratus) in Australia and two new host species, Cassia brewsteri and Cassia tomentella. Aust J Exp Agric 42:57–63CrossRefGoogle Scholar
  8. Devi DR, Rao NV (2005) Note on the performance of different groundnut pod-protectants against groundnut bruchid, Caryedon serratus (Olivier). Legume Res 28:229–230Google Scholar
  9. Dick KM (1987) Losses caused by insects to groundnuts stored in a warehouse in India. Trop Sci 27:65–75Google Scholar
  10. Diome T, Ndiaye A, Ndong A, Doumma A, Sanon A, Kétoh G, Sembéne M (2011) Genetic identification of West African ecotypes of groundnut seedbeetle Caryedon serratus Ol. (Coleopteran, Chrysomelidae). South Asian J Exp Biol 1:88–93Google Scholar
  11. Diome T, Ndong A, Kébé K, Thiaw C, Ndiaye A, Doumma A, Sanon A, Kétoh G, Sembéne M (2013) Effect of agroecological zones and contiguous basin crops of groundnut (Arachis hypogaea) on the structuring and genetic diversity of Caryedon serratus (Coleopteran: Chrysomelidae, Bruchidae) in the sub-region of West Africa. J Asia-Pac Entomol 16:209–217CrossRefGoogle Scholar
  12. Divol F, Vilaine F, Thibivilliers S, Amelem J, Palauqui JC, Kusiak C, Dinant S (2005) Systemic response to aphid infestation by Myzus persicae in the phloem of Apium graveolens. Plant Mol Biol 57:517–540PubMedCrossRefGoogle Scholar
  13. Doerge RW (2002) Multifactorial genetics: mapping and analysis of quantitative trait loci in experimental populations. Nat Rev 3:43–52CrossRefGoogle Scholar
  14. Dongre TK, Pawar SE, Thakare RG, Harwalker MR (1996) Identification of resistant sources to cowpea weevil (Callosobruchus maculatus (F.)) in Vigna sp. and inheritance of their resistance in black gram (Vigna mungo var. mungo). J Stored Prod Res 32:201–204CrossRefGoogle Scholar
  15. FAOSTAT (2011) Food and Agricultural Organization. Available at http://faostat.fao.org (accessed 25 July 2013)
  16. Gautami B, Foncéka D, Pandey M, Moretzsohn MC, Sujay V, Qin H, Hong Y, Faye I, Chen X, Bhanuprakash A, Shah TM, Gowda MVC, Nigam SN, Liang X, Hoisington DA, Guo B, Bertioli DJ, Rami JF, Varshney RK (2012) An international reference consensus genetic map with 897 marker loci based on 11 mapping populations for tetraploid groundnut (Arachis hypogaea L.). PLoS One 7(7):e41213PubMedCentralPubMedCrossRefGoogle Scholar
  17. Gibson KE, Raina AK (1972) A simple laboratory method of determining the seed host preference of Bruchidae. J Econ Entomol 65:1189–1190Google Scholar
  18. Hammer O, Harper DAT, Ryan PD (2008) PAST-palaeontological statistics, ver 1.81. Available at: http://folk.uio.no/ohammer/past (accessed 25 Dec 2012)
  19. Hanson CH, Robinson HF, Comstock RE (1956) Biometrical studies of yield in segregating populations of Korean Lespedeza. Agron J 48:268–272CrossRefGoogle Scholar
  20. Harish G, Rathnakumar AL, Kumar N, Ajay BC, Holajjer P, Savaliya SD, Gedia MV (2012) Comparative response of groundnut genotypes to bruchid beetle, Caryedon serratus Olivier in storage. Ann Plant Prot Sci 20:140–144Google Scholar
  21. Herselman L, Thwaites R, Kimmins FM, Courtois B, Van der Merwe PJA, Seal SE (2004) Identification and mapping of AFLP markers linked to peanut (Arachis hypogaea L.) resistance to the aphid vector of groundnut rosette disease. Theor Appl Genet 109:1426–1433PubMedCrossRefGoogle Scholar
  22. Howe RW (1971) A parameter for expressing the suitability of an environment for insect development. J Stored Prod Res 7:63–65CrossRefGoogle Scholar
  23. IITA (International Institute for Tropical Agriculture) (2000) Field crop production. Annual report. IITA, Ibadan, p 10Google Scholar
  24. IRRI (2003) IRRISTAT for windows. V 4.4. International Rice Research Institute, Metro ManilaGoogle Scholar
  25. Janila P, Nigam SN, Pandey MK, Nagesh P, Varshney RK (2013) Groundnut improvement: use of genetic and genomic tools. Front Plant Sci 4:23. doi:10.3389/fpls.2013.00023 PubMedCentralPubMedCrossRefGoogle Scholar
  26. Koilkonda P, Sato S, Tabata S, Shirasawa K, Hirakawa H, Sakai H, Sasamoto S, Watanabe A, Wada T, Kishida Y, Tsuruoka H, Fujishiro T, Yamada M, Kohara M, Suzuki S, Hasegawa M, Kiyoshima H, Isobe S (2012) Large-scale development of expressed sequence tag-derived simple sequence repeat markers and diversity analysis in Arachis spp. Mol Breed 30:125–138PubMedCentralPubMedCrossRefGoogle Scholar
  27. Kosambi DD (1944) The estimation of map distances from recombination values. Ann Eugen 12:172–175CrossRefGoogle Scholar
  28. Lincoln SE, Daly MJ, Lander ES (1992) Constructing genetic linkage maps with MAPMAKER EXP V3.0. Whitehead Institute Technical Report, 3rd edn.Google Scholar
  29. Macedo SE, Moretzsohn MC, Leal-Bertioli SCM, Alves DMT, Gouvea EG, Azevedo VCR, Bertioli DJ (2012) Development and characterization of highly polymorphic long TC repeat microsatellite markers for genetic analysis of peanut. BMC Res Notes 5:86PubMedCentralPubMedCrossRefGoogle Scholar
  30. Mishra RP, Mukherjee SK, Dash D (2012) Influence of environmental factor on the growth and development of groundnut bruchid Caryedon serratus (Olivier) in storage. Indian J Entomol 74:36–40Google Scholar
  31. Mondal S, Badigannavar AM (2008) Identification of SSR marker for resistance to late leaf spot in cultivated groundnut (Arachis hypogaea L.). In: Abstract, 5th international crop science congress (ICSC), April 13–18, 2008, Jeju, Republic of Korea, p 266Google Scholar
  32. Mondal S, Badigannavar AM (2010) Molecular diversity and association of SSR markers to rust and late leaf spot resistance in cultivated groundnut (Arachis hypogaea L.). Plant Breed 129:68–71CrossRefGoogle Scholar
  33. Mondal S, Badigannavar AM, Murty GSS (2007) RAPD markers linked to a rust resistance gene in groundnut (Arachis hypogaea L.). Euphytica 159:233–239CrossRefGoogle Scholar
  34. Mondal S, Badigannavar AM, D’Souza SF (2012a) Molecular tagging of a rust resistance gene in cultivated groundnut (Arachis hypogaea L.) introgressed from Arachis cardenasii. Mol Breed 29:467–476CrossRefGoogle Scholar
  35. Mondal S, Badigannavar AM, D’Souza SF (2012b) Developement of genic molecular markers linked to a rust resistance gene in cultivated groundnut (Arachis hypogaea L.). Euphytica 188:163–173CrossRefGoogle Scholar
  36. Moretzsohn MC, Barbosa AVG, Alves-Freitas DMT, Moretzsohn MC, Guimarães PM, Nielen S, Vidigal BS, Pereira RW, Pike J, Fávero AP, Parniske M, Varshney RK, Bertioli DJ (2009) A linkage map for the B genome of Arachis (Fabaceae) and its synteny to the A-genome. BMC Plant Biol 9:40PubMedCentralPubMedCrossRefGoogle Scholar
  37. Morton RL, Schroeder HE, Bateman KS, Chrispeels MJ, Armstrong E, Higgins TJV (2000) Bean α-amylase1 in transgenic peas (Pisum sativum) provides complete protection from pea weevil (Bruchus pisorum) under field conditions. Proc Natl Acad Sci USA 97:3820–3825PubMedCentralPubMedCrossRefGoogle Scholar
  38. Nagy ED, Guo Y, Tang S, Bowers JE, Okashah RA, Taylor CA, Zhang D, Khanal S, Heesacker AF, Khalilian N, Farmer AD, Carrasquilla-Garcia N, Penmetsa RV, Cook D, Stalker HT, Nielsen N, Ozias-Atkin P, Knapp SJ (2012) A high-density genetic map of Arachis duranensis, a diploid ancestor of cultivated peanut. BMC Genomics 13:469PubMedCentralPubMedCrossRefGoogle Scholar
  39. Ouedraogo I, Traore NS, Dakouo D, Guenda W, Dicko OI, Dabire LCB (2008) Impact de la bruche Caryedon serratus Olivier sur les Stocks d’arachide et Stratégie de protection en milieu paysan. Sci Tech Sci Nat Agron 30:7–18Google Scholar
  40. Park SJ, Huang Y, Ayoubi P (2006) Identification of expression profiles of sorghum genes in response to greenbug phloem feeding using cDNA subtraction and microarray analysis. Planta 223:932–947PubMedCrossRefGoogle Scholar
  41. Patil SH, Kale DM, Deshmukh SN, Fulzele GR, Weginwar BG (1995) Semi-dwarf, early maturing and high yielding new groundnut variety, TAG 24. J Oilseed Res 12:254–257Google Scholar
  42. Prasad TV, Nandagopal V, Gedia MV, Savaliya SD (2007) Life table of Caryedon serratus (Coleopteran: Bruchidae) reared on three different hosts. Indian J Entomol 70:246–249Google Scholar
  43. Qin H, Feng S, Chen C, Guo Y, Knapp S, Culbreath A, He G, Wang ML, Zhang X, Holbrook CC, Ozias-Akins P, Guo B (2012) An integrated genetic linkage map of cultivated peanut (Arachis hypogaea L.) constructed from two RIL populations. Theor Appl Genet 124:653–664PubMedCrossRefGoogle Scholar
  44. Radwan OE, Ahmed TA, Knapp SJ (2010) Phylogenetic analyses of peanut resistance gene candidates and screening of different genotypes for polymorphic markers. Saudi J Biol Sci 17:43–49PubMedCentralPubMedCrossRefGoogle Scholar
  45. Ranga Rao GV, Rameshwar Rao V, Nigam SN (2010) Post harvest insect pest of groundnut and their management. In: Information bulletin no. 84. International Crops Research Institute for Semi-Arid Tropics, Andhra Pradesh, ISBN: 978-92-9066-528-1. Order code IBE 084, p 20Google Scholar
  46. Redden RJ, Dobie P, Gatehouse AMR (1983) The inheritance of seed resistance to Callosobruchus rnaculatus F. in cowpea (Vigna unguiculata L. Walp.). I. Analyses of parental, F1, F2, F3 and backcross seed generations. Aust J Agric Res 34:681–695CrossRefGoogle Scholar
  47. Redlinger LM, Davis R (1982) Insect control in postharvest peanuts. In: Pattee HE, Young CT (eds) Peanut science and technology. American Peanut Research and Education Society, Yoakum, TX, pp 520–571Google Scholar
  48. Sembène M, Rasplus JY, Silvain JF, Delobel A (2008) Genetic differentiation in sympatric populations of the groundnut seed beetle Caryedon serratus (Coleoptera: Chrysomelidae): new insights from molecular and ecological data. Int J Trop Insect Sci 28:168–177CrossRefGoogle Scholar
  49. Shirasawa K, Hirakawa H, Tabata S, Hasegawa M, Kiyoshima H, Suzuki S, Sasamoto S, Watanabe A, Fujishiro T, Isobe S (2012) Characterization of active miniature inverted-repeat transposable elements in the peanut genome. Theor Appl Genet 124:1365–1373CrossRefGoogle Scholar
  50. Shirasawa K, Bertioli DJ, Varshney RK, Moretzsohn MC, Leal-Bertioli SCM, Thudi M, Pandey MK, Rami JF, Foncéka D, Gowda MVC, Qin H, Guo B, Hong Y, Liang X, Hirakawa H, Tabata S, Isobe S (2013) Integrated consensus map of cultivated peanut and wild relatives reveals structures of the A and B genomes of Arachis and divergence of the legume genomes. DNA Res 20:173–184PubMedCentralPubMedCrossRefGoogle Scholar
  51. Singh V, Anitha Kumari D, Reddy VS, Tejkumar S (2002) Feeding potential of pod bruchid, Caryedon serratus Olivier (Bruchidae: Coleoptera) on stored groundnut. Indian J Plant Prot 30:213–214Google Scholar
  52. Somta P, Ammaranan C, Ooi PAC, Srinives P (2007) Inheritance of seed resistance of bruchids in cultivated mungbean (Vigna radiata L. Wilezek). Euphytica 155:47–55CrossRefGoogle Scholar
  53. Somta P, Kaga A, Tomooka N, Isemura T, Vaughan DA, Srivines P (2008) Mapping of quantitative trait loci for a new source of resistance to bruchids in the wild species Vigna nepalens Tateishi & Maxted (Vigna subgenus Ceratotropis). Theor Appl Genet 117:621–628PubMedCrossRefGoogle Scholar
  54. Souframanien J, Gupta SK, Gopalakrishna T (2010) Identification of quantitative trait loci for bruchid (Callosobruchus maculatus) resistance in black gram (Vigna mungo (L.) Hepper). Euphytica 176:349–356CrossRefGoogle Scholar
  55. Varman PV (1999) A foliar disease resistant line developed through interspecific hybridization in groundnut (Arachis hypogaea). Indian J Agric Sci 69:67–68Google Scholar
  56. Voorrips RE (2002) Mapchart: software for the graphical presentation of linkage map and QTL. J Hered 93:77–78PubMedCrossRefGoogle Scholar
  57. Wang S, Basten CJ, Zeng ZB (2007) Windows QTL cartographer 2.5. Department of Statistics North Carolina State University, Raleigh. http://statgen.ncsu.edu/qtlcart/WQTLCart.htm
  58. Wang JK, Li HH, Zhang LY, Meng L (2012) QTL IciMapping version 3.2. http://www.isbreeding.net (accessed 15 Mar 2013)

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Suvendu Mondal
    • 1
  • Ashok B. Hadapad
    • 1
  • Poonam A. Hande
    • 1
  • Anand M. Badigannavar
    • 1
  1. 1.Nuclear Agriculture and Biotechnology DivisionBhabha Atomic Research CentreMumbaiIndia

Personalised recommendations