Advertisement

Molecular Breeding

, Volume 32, Issue 1, pp 233–239 | Cite as

Facilitating wide hybridization in Hydrangea s. l. cultivars: A phylogenetic and marker-assisted breeding approach

  • Carolina Granados Mendoza
  • Stefan Wanke
  • Paul Goetghebeur
  • Marie-Stéphanie Samain
Short communication

Abstract

Hydrangea s. l., belonging to the up-market segment of ornamental cultivars, currently faces a renaissance in horticulture. Hence, novel molecular-assisted breeding approaches are timely. Wide hybridization, i.e. crosses between distantly related species, has been shown to be problematic. Recent studies have considerably improved our knowledge of the phylogenetic relationships between the ornamental Hydrangea s. l. species. A fully resolved and highly supported phylogenetic tree is currently available, based on an extensive marker selection including 13 highly variable chloroplast markers. This robust phylogenetic framework includes the majority of widely cultivated Hydrangea s. l. species that have been the center of attention in a number of crossing projects. The present study is based on this highly supported phylogenetic hypothesis. Here, we aim to select the best candidates for future successful breeding projects, involving interspecific crosses of both closely and distantly related Hydrangea s. l. lineages. Therefore, we integrated the phylogenetic relatedness of potential parental lines along with genetic distances calculated from a wide plastid marker selection. Direct crosses between two species were found to be successful up to an average genetic distance of 0.01065, while failure could be expected at an average genetic distance of 0.01385 and higher. In order to overcome this genetic distance threshold, we propose Hydrangea arborescens, H. sargentiana, H. integrifolia, and H. seemannii as the best candidates for future bridge-cross projects with currently available fertile hybrids. We expect that our results will allow breeders to overcome long-standing wide crossing difficulties and motivate breeding initiatives of potential economic value.

Keywords

Hydrangeaceae Hortensia Chloroplast markers Interspecific hybridization Bridge-cross breeding Genetic distances 

Notes

Acknowledgments

Financial support for this study comes from the Special Research Fund of Ghent University (Bijzonder Onderzoeksfonds project 01J03309) and the “Bundesministerium für Bildung und Forschung (BMBF) KMU-innovativ 9: Biotechnologie – BioChance”. Seed grants provided to CGM & SW by the Biology Department of the TU Dresden are gratefully acknowledged. Additional financial support to CGM was granted by the Consejo Mexiquense de Ciencia y Tecnología (Mexico). We sincerely thank Christoph Neinhuis for providing the research environment at the TU Dresden and supporting our collaborative Hydrangea s. l. research initiative. We are very grateful for the provision of some Hydrangea accessions by Koen Camelbeke (Arboretum Wespelaar, Haacht, Belgium) and Georges Piens (Hydrangeum vzw, satellite garden of Ghent University Botanic Garden, Belgium). Thanks also to Chantal Dugardin and Rosette Heynderickx who helped with obtaining material and with administrative tasks for this project. Finally, the helpful comments on different aspects of a previous version of the manuscript by Marc Libert, Yannick De Smet and Paola Granados Mendoza are gratefully acknowledged.

Supplementary material

11032_2012_9822_MOESM1_ESM.xls (36 kb)
Supplementary material 1 (XLS 18 kb)

References

  1. Alberti P, Casali PE, Barbaglio E, Toppino L, Mennella G, Falavigna A (2004) Interspecific hybridization for Asparagus breeding. In: Proceedings of the XLVIII Italian society of agricultural genetics–SIFV-SIGA Joint Meeting, Lecce, ItalyGoogle Scholar
  2. Cerbah M, Mortreau E, Brown S, Siljak-Yakovlev S, Bertrand H, Lambert C (2001) Genome size variation and species relationships in the genus Hydrangea. Theor Appl Genet 103(1):45–51. doi: 10.1007/s001220000529 CrossRefGoogle Scholar
  3. Du X, Sun Y, Li X, Zhou J, Li X (2011) Genetic divergence among inbred lines in Cucurbita moschata from China. Sci Hort 127(3):207–213. doi: 10.1016/j.scienta.2010.10.018 CrossRefGoogle Scholar
  4. Eijk JP, Raamsdonk LWD, Eikelboom W, Bino RJ (1991) Interspecific crosses between Tulipa gesneriana cultivars and wild Tulipa species: a survey. Sex Plant Reprod 4(1):1–5. doi: 10.1007/bf00194563 CrossRefGoogle Scholar
  5. Gajera BB, Kumar N, Singh AS, Punvar BS, Ravikiran R, Subhash N, Jadeja GC (2010) Assessment of genetic diversity in castor (Ricinus communis L.) using RAPD and ISSR markers. Ind Crop Prod 32(3):491–498. doi: 10.1016/j.indcrop.2010.06.021 CrossRefGoogle Scholar
  6. Granados Mendoza C, Wanke S, Salomo K, Goetghebeur P, Samain M-S (2013) Application of the phylogenetic informativeness method to chloroplast markers: a test case of closely related species in tribe Hydrangeeae (Hydrangeaceae). Mol Phylogenet Evol 66:233–242. doi: 10.1016/j.ympev.2012.09.029 PubMedCrossRefGoogle Scholar
  7. Hufford L, Moody ML, Soltis DE (2001) A phylogenetic analysis of Hydrangeaceae based on sequences of the plastid gene matK and their combination with rbcL and morphological data. Int J Plant Sci 162(4):835–846. doi: 10.1086/320789 CrossRefGoogle Scholar
  8. Jagosz B (2011) The relationship between heterosis and genetic distances based on RAPD and AFLP markers in carrot. Plant Breed 130(5):574–579. doi: 10.1111/j.1439-0523.2011.01877.x CrossRefGoogle Scholar
  9. Jansky S, Hamernik A (2009) The introgression of 23 1EBN Solanum species into the cultivated potato using Solanum verrucosum as a bridge. Genet Resour Crop Evol 56(8):1107–1115. doi: 10.1007/s10722-009-9433-3 CrossRefGoogle Scholar
  10. Jones KD, Reed SM (2006) Production and verification of Hydrangea arborescens ‘Dardom’ × H. involucrata hybrids. HortScience 41(3):564–566Google Scholar
  11. Jones KD, Reed SM (2007) Analysis of ploidy level and its effects on guard cell length, pollen diameter, and fertility in Hydrangea macrophylla. HortScience 42(3):483–488Google Scholar
  12. Kardos JH, Robacker CD, Dirr MA, Rinehart TA (2009) Production and verification of Hydrangea macrophylla × H. angustipetala hybrids. HortScience 44(6):1534–1537Google Scholar
  13. Khrustaleva LI, Kik C (1998) Cytogenetical studies in the bridge cross Allium cepa × (A. fistulosum × A. roylei). Theor Appl Genet 96(1):8–14. doi: 10.1007/s001220050702 CrossRefGoogle Scholar
  14. Kubota S, Konno I, Kanno A (2011) Molecular phylogeny of the genus Asparagus (Asparagaceae) explains interspecific crossability between the garden asparagus (A. officinalis) and other Asparagus species. Theor Appl Genet. doi: 10.1007/s00122-011-1709-2
  15. Kudo N, Niimi Y (1999) Production of interspecific hybrid plants through cotyledonary segment culture of embryos derived from crosses between Hydrangea macrophylla f. hortensia (Lam.) Rehd. and H. arborescens L. J Jpn Soc Hortic Sci 68(4):803–809Google Scholar
  16. Kudo N, Kimura Y, Niimi Y (2002) Production of interspecific hybrid plants by crossing Hydrangea macrophylla f. hortensia (Lam.) Rehd. and H. quercifolia Bartr. through ovule culture. Hort Res (Jpn) 1(1):9–12Google Scholar
  17. McClintock E (1957) A monograph of the genus Hydrangea. Proc Calif Acad Sci 29(5):147–256Google Scholar
  18. Mohanty A, Chrungu B, Verma N, Shivanna KR (2009) Broadening the genetic base of crop Brassicas by production of new Intergeneric hybrid. Czech J Genet Plant Breed 45(3):117–122Google Scholar
  19. Mortreau E, Siljak-Yakovlev S, Cerbah M, Brown SC, Bertrand H, Lambert C (2010) Cytogenetic characterization of Hydrangea involucrata Sieb. and H. aspera D. Don complex (Hydrangeaceae): genetic, evolutional, and taxonomic implications. Tree Genet Genomes 6(1):137–148. doi: 10.1007/s11295-009-0235-8
  20. Parris JK, Ranney TG, Knap HT, Baird WV (2010) Ploidy levels, relative genome sizes, and base pair composition in Magnolia. J Am Soc Hort Sci 135(6):533–547Google Scholar
  21. Reed SM (2000) Compatibility studies in Hydrangea. J Environ Hort 18(1):29–33Google Scholar
  22. Reed SM, Riedel GL, Pooler MR (2001) Verification and establishment of Hydrangea macrophylla ‘Kardinal’ × H. paniculata ‘Brussels Lace’ interspecific hybrids. J Environ Hort 19(2):85–88Google Scholar
  23. Reed SM, Jones KD, Rinehart TA (2008) Production and characterization of intergeneric hybrids between Dichroa febrifuga and Hydrangea macrophylla. J Am Soc Hort Sci 133(1):84–91Google Scholar
  24. Rinehart TA, Scheffler BE, Reed SM (2006) Genetic diversity estimates for the genus Hydrangea and development of a molecular key based on SSR. J Am Soc Hort Sci 131(6):787–797Google Scholar
  25. Rinehart TA, Scheffler BE, Reed SM (2010) Ploidy variation and genetic diversity in Dichroa. HortScience 45(2):208–213Google Scholar
  26. Samain M-S, Wanke S, Goetghebeur P (2010) Unraveling extensive paraphyly in the genus Hydrangea s. l. with implications for the systematics of tribe Hydrangeeae. Syst Bot 35(3):593–600Google Scholar
  27. Soltis DE, Xiang QY, Hufford L (1995) Relationships and evolution of Hydrangeaceae based on rbcL sequence data. Am J Bot 82(4):504–514. doi: 10.2307/2445698 CrossRefGoogle Scholar
  28. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using Maximum Likelihood, evolutionary distance, and Maximum Parsimony methods. Mol Biol Evol 28(10):2731–2739. doi: 10.1093/molbev/msr121 PubMedCrossRefGoogle Scholar
  29. Tychonievich J, Warner RM (2011) Interspecific crossability of selected Salvia species and potential use for crop improvement. J Am Soc Hort Sci 136(1):41–47Google Scholar
  30. Van Laere K (2008) Interspecific hybridisation in woody ornamentals. PhD. Thesis, Faculty of Bioscience Engineering, Ghent University, GhentGoogle Scholar
  31. Van Laere K, Van Huylenbroeck J, Van Bockstaele E (2008) Karyotype analysis and physical mapping of 45S rRNA genes in Hydrangea species by fluorescence in situ hybridization. Plant Breed 127(3):301–307. doi: 10.1111/j.1439-0523.2007.01456.x CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Carolina Granados Mendoza
    • 1
  • Stefan Wanke
    • 2
  • Paul Goetghebeur
    • 1
  • Marie-Stéphanie Samain
    • 1
  1. 1.Research Group Spermatophytes, Department of BiologyGhent UniversityGhentBelgium
  2. 2.Institut für BotanikTechnische Universität DresdenDresdenGermany

Personalised recommendations