Molecular Breeding

, Volume 30, Issue 3, pp 1431–1442 | Cite as

Integrated approaches to studying Medicago truncatula genome structure and function and their applications in biotechnology

  • A. S. Pires
  • N. Geraldo
  • T. Cerqueira
  • R. Abranches
Article
  • 243 Downloads

Abstract

Plant genetic engineering has become an invaluable tool in plant research. Although plant transformation is a well-established technique, transgene expression is still unpredictable. Silencing may involve epigenetic modifications or nuclear and chromosomal localization of transgenes. In this way, understanding nuclear structure and organization is important not only for increasing our knowledge of fundamental aspects of the genome but also for taking the greatest advantage of inserting foreign genes and controlling their expression in biotechnological applications. Integrated approaches are clearly required in order to elucidate such complex processes. By combining the analysis of the physical position of transgenes with markers for epigenetic modifications in the plant genome we can better understand the factors affecting transgene expression levels and analyze the genomic environments of differentially expressed transgenes. Medicago truncatula Gaertn. has become a well-known model for the legume family and is used in studies ranging from nodulation to environmental stresses. More recently its use in biotechnology has been explored. In this report we describe the application of fluorescence in situ hybridization (FISH) to detect foreign DNA sequences and to determine the organization of the nucleolar organizer regions (NORs) genes in both metaphase chromosomes and interphase nuclei. We also studied chromatin distribution by immunodetection of epigenetic marks in M. truncatula interphase nuclei from tissue sections. We present evidence that M. truncatula is amenable to this kind of studies, which will in turn contribute to a better exploitation of biotechnology applications for this important plant family.

Keywords

Medicago truncatula Transgene Nuclear structure FISH Epigenetic marks 

References

  1. Abirached-Darmency M, Prado-Vivant E, Chelysheva L, Pouthier T (2005) Variation in rDNA locus number and position among legume species and detection of 2 linked rDNA loci in the model Medicago truncatula by FISH. Genome 48:556–561. doi:10.1139/G05-015 PubMedCrossRefGoogle Scholar
  2. Abranches R, Santos AP, Wegel E, Williams S, Castilho A, Christou P, Shaw P, Stoger E (2000) Widely separated multiple transgene integration sites in wheat chromosomes are brought together at interphase. Plant J 24:713–723. doi:10.1111/j.1365-313X.2000.00908.x PubMedCrossRefGoogle Scholar
  3. Abranches R, Marcel S, Arcalis E, Altmann F, Fevereiro P, Stoger E (2005) Plants as bioreactors: a comparative study suggests that Medicago truncatula is a promising production system. J Biotechnol 120:121–134. doi:10.1016/j.jbiotec.2005.04.026 PubMedCrossRefGoogle Scholar
  4. Abranches R, Arcalis E, Marcel S, Altmann F, Ribeiro-Pedro M, Rodriguez J, Stoger E (2008) Functional specialization of Medicago truncatula leaves and seeds does not affect the subcellular localization of a recombinant protein. Planta 227:649–658. doi:10.1007/s00425-007-0647-3 PubMedCrossRefGoogle Scholar
  5. Ané JM, Lévy J, Thoquet P, Kulikova O, de Billy F, Penmetsa V, Kim DJ, Debellé F, Rosenberg C, Cook DR, Bisseling T, Huguet T, Dénarié J (2002) Genetic and cytogenetic mapping of DMI1, DMI2, and DMI3 genes of Medicago truncatula involved in Nod factor transduction, nodulation, and mycorrhization. Mol Plant Microbe Int 15:1108–1118. doi:10.1094/MPMI.2002.15.11.1108 CrossRefGoogle Scholar
  6. Ané JM, Zhu H, Frugoli J (2008) Recent Advances in Medicago truncatula Genomics. Int J Plant Genomics 2008:11 Article ID 256597. doi:10.1155/2008/256597
  7. Araújo SS, Duque ASRLA, Santos DMMF, Fevereiro MPS (2004) An efficient transformation method to regenerate a high number of transgenic plants using a new embryogenic line of Medicago truncatula cv. Jemalong. Plant Cell Tiss Org 78:123–131. doi:10.1023/B:TICU.0000022540.98231.f8 CrossRefGoogle Scholar
  8. Benlloch R, Roque E, Ferrándiz C, Cosson V, Caballero T, Penmetsa RV, Beltrán JP, Cañas LA, Ratet P, Madueño F (2009) Analysis of B function in legumes: PISTILLATA proteins do not require the PI motif for floral organ development in Medicago truncatula. Plant J 60:102–111. doi:10.1111/j.1365-313X.2009.03939.x PubMedCrossRefGoogle Scholar
  9. Cannon SB, Crow JA, Heuer ML, Wang X, Cannon EK, Dwan C, Lamblin AF, Vasdewani J, Mudge J, Cook A, Gish J, Cheung F, Kenton S, Kunau TM, Brown D, May GD, Kim D, Cook DR, Roe BA, Town CD, Young ND, Retzel EF (2005) Databases and information integration for the Medicago truncatula genome and transcriptome. Plant Physiol 138:38–46. doi:10.1104/pp.104.059204 PubMedCrossRefGoogle Scholar
  10. Caperta AD, Rosa M, Delgado M, Karimi R, Demidov D, Viegas W, Houben A (2008) Distribution patterns of phosphorylated Thr 3 and Thr 32 of histone H3 in plant mitosis and meiosis. Cytogenet Genome Res 122:73–79. doi:10.1159/000151319 PubMedCrossRefGoogle Scholar
  11. Carelli M, Biazzi E, Panara F, Tava A, Scaramelli L, Porceddu A, Graham N, Odoardi M, Piano E, Arcioni S, May S, Scotti C, Calderini O (2011) Medicago truncatula CYP716A12 is a multifunctional oxidase involved in the biosynthesis of hemolytic saponins. Plant Cell 23:3070–3081. doi:10.1105/tpc.111.087312 PubMedCrossRefGoogle Scholar
  12. Castilho A, Heslop-Harrison JS (1995) Physical mapping of 5S and 18S–25S rDNA and repetitive DNA sequences in Aegilops umbellulata. Genome 38:91–96PubMedCrossRefGoogle Scholar
  13. Castilho A, Cunha M, Afonso AR, Morais-Cecílio L, Fevereiro PS, Viegas W (2005) Genomic characterization and physical mapping of two fucosyltransferase genes in Medicago truncatula. Genome 48:168–716. doi:10.1139/G04-094 PubMedCrossRefGoogle Scholar
  14. Cerbah M, Kevei Z, Silijak-Yakovlev S, Kondorosi E, Kondorosi A, Trinh TH (1999) FISH chromosome mapping allowing karyotype analysis in Medicago truncatula lines Jemalong J5 and R-108-1. Mol Plant Microbe Interact 12:947–950. doi:10.1094/MPMI.1999.12.11.947 CrossRefGoogle Scholar
  15. Chabaud M, de Carvalho-Niebel F, Barker DG (2003) Efficient transformation of Medicago truncatula cv. Jemalong using the hypervirulent Agrobacterium tumefaciens strain AGL1. Plant Cell Rep 22:45–46. doi:10.1007/s00299-003-0649-y CrossRefGoogle Scholar
  16. Choi HK, Mun JH, Kim DJ, Zhu H, Baek JM, Mudge J, Roe B, Ellis N, Doyle J, Kiss GB, Young ND, Cook DR (2004) Estimating genome conservation between crop and model legume species. Proc Natl Acad Sci USA 101:15289–15294. doi:10.1073/pnas.0402251101 PubMedCrossRefGoogle Scholar
  17. de Jong H (2003) Visualizing DNA domains and sequences by microscopy: a fifty-year history of molecular cytogenetics. Genome 46:943–946. doi:10.1139/G03-107 PubMedCrossRefGoogle Scholar
  18. Dong J, Kharb P, Cervera M, Hall TC (2001) The use of FISH in chromosomal localization of transgenes in rice. Methods Cell Sci 23:105–113. doi:10.1023/A:1013174406432 PubMedCrossRefGoogle Scholar
  19. Falistocco E (2000) Physical mapping of rRNA genes in Medicago sativa and M. glomerata by fluorescent in situ hybridization. J Hered 91:256–260PubMedCrossRefGoogle Scholar
  20. Falistocco E, Falcinelli M (2003) Genomic organization of rDNA loci in natural populations of Medicago truncatula Gaertn. Hereditas 138:1–5. doi:10.1034/j.1601-5223.2003.01540.x PubMedCrossRefGoogle Scholar
  21. Falistocco E, Torricelli R, Falcinelli M (2002) Genomic relationships between Medicago murex Willd. and Medicago lesinsii E. Small. investigated by in situ hybridization. Theor Appl Genet 105:829–833. doi:10.1007/s00122-002-1055-5 PubMedCrossRefGoogle Scholar
  22. Farag MA, Huhman DV, Dixon RA, Sumner LW (2008) Metabolomics reveals novel pathways and differential mechanistic and elicitor-specific responses in phenylpropanoid and isoflavonoid biosynthesis in Medicago truncatula cell cultures. Plant Physiol 146:387–402. doi:10.1007/s00122-002-1055-5 PubMedCrossRefGoogle Scholar
  23. Findley SD, Cannon S, Varala K, Du J, Ma J, Hudson ME, Birchler JA, Stacey G (2010) A fluorescence in situ hybridization system for karyotyping soybean. Genetics 185:727–744. doi:10.1534/genetics.109.113753 PubMedCrossRefGoogle Scholar
  24. Florijn RJ, Bonden LA, Vrolijk H, Wiegant J, Vaandrager JW, Baas F, den Dunnen JT, Tanke HJ, van Ommen GJ, Raap AK (1995) High-resolution DNA Fiber-FISH for genomic DNA mapping and colour bar-coding of large genes. Hum Mol Genet 4:831–836. doi:10.1093/hmg/4.5.831 PubMedCrossRefGoogle Scholar
  25. Fransz PF, Alonso-Blanco C, Liharska TB, Peeters AJ, Zabel P, de Jong JH (1996) High-resolution physical mapping in Arabidopsis thaliana and tomato by fluorescence in situ hybridization to extended DNA fibres. Plant J 9:421–430. doi:10.1046/j.1365-313X.1996.09030421.x PubMedCrossRefGoogle Scholar
  26. Fransz P, Soppe W, Schubert I (2003) Heterochromatin in interphase nuclei of Arabidopsis thaliana. Chromosome Res 11:227–240. doi:10.1023/A:1022835825899 PubMedCrossRefGoogle Scholar
  27. Gelvin SB, Kim SI (2007) Effect of chromatin upon Agrobacterium T-DNA integration and transgene expression. Biochim Biophys Acta 1769:410–421. doi:10.1016/j.bbaexp.2007.04.005 PubMedCrossRefGoogle Scholar
  28. Geraldo N, Abranches R (2008) Immunolocalization of histone modifications as a tool to visualize chromatin dynamics in plants. Microsc Microanal 14S3:130–133. doi:10.1017/S1431927608089642 CrossRefGoogle Scholar
  29. Gerlach WL, Bedbrook JR (1979) Cloning and characterization of ribosomal RNA genes from wheat and barley. Nucleic Acids Res 7:1869–1885. doi:10.1093/nar/7.7.1869 PubMedCrossRefGoogle Scholar
  30. Gonzalez-Melendi P, Pires AS, Abranches R (2009) Cell line-dependent sorting of recombinant phytase in cell cultures of Medicago truncatula. Funct Plant Biol 36:431–444. doi:10.1071/FP08260 CrossRefGoogle Scholar
  31. Iantcheva A, Chabaud M, Cosson V, Barascud M, Schutz B, Primard-Brisset C, Durand P, Barker DG, Vlahova M, Ratet P (2009) Osmotic shock improves Tnt1 transposition frequency in Medicago truncatula cv Jemalong during in vitro regeneration. Plant Cell Rep 28:1563–1572. doi:10.1007/s00299-009-0755-6 PubMedCrossRefGoogle Scholar
  32. Kaczmarek A, Naganowska B, Wolko B (2009) Karyotyping of the narrow-leafed lupin (Lupinus angustifolius L.) by using FISH, PRINS and computer measurements of chromosomes. J Appl Genet 50:77–82PubMedCrossRefGoogle Scholar
  33. Kamaté K, Rodriguez-Llorente ID, Scholte M, Durand P, Ratet P, Kondorosi E, Kondorosi A, Trinh TH (2000) Transformation of floral organs with GFP in Medicago truncatula. Plant Cell Rep 19:647–653. doi:10.1007/s002999900168 CrossRefGoogle Scholar
  34. Kohli A, Twyman RM, Abranches R, Wegel E, Stoger E, Christou P (2001) Transgene integration, organization and interaction in plants. Plant Mol Biol 52:247–258. doi:10.1023/A:1023941407376 CrossRefGoogle Scholar
  35. Kohli A, Twyman RM, Abranches R, Wegel E, Stoger E, Christou P (2003) Transgene integration, organization and interaction in plants. Plant Mol Biol 52:247–258Google Scholar
  36. Koornneef M, Fransz P, de Jong H (2003) Cytogenetic tools for Arabidopsis thaliana. Chromosome Res 11:183–194. doi:10.1023/A:1022827624082 PubMedCrossRefGoogle Scholar
  37. Kulikova O, Gualtieri G, Geurts R, Kim DJ, Cook D, Huguet T, de Jong JH, Fransz PF, Bisseling T (2001) Integration of the FISH pachytene and genetic maps of Medicago truncatula. Plant J 27:49–58. doi:10.1046/j.1365-313x.2001.01057.x PubMedCrossRefGoogle Scholar
  38. Kulikova O, Geurts R, Lamine M, Kim DJ, Cook DR, Leunissen J, de Jong H, Roe BA, Bisseling T (2004) Satellite repeats in the functional centromere and pericentromeric heterochromatin of Medicago truncatula. Chromosoma 113:276–283. doi:10.1007/s00412-004-0315-3 PubMedCrossRefGoogle Scholar
  39. Kumar S (2011) Biotechnological advancements in alfalfa improvement. J Appl Genet 52:111–124. doi:10.1007/s13353-011-0028-2 PubMedCrossRefGoogle Scholar
  40. Kumpatla SP, Chandrasekharan MB, Iyer LM, Guofu L, Hall TC (1998) Genome intruder scanning and modulation systems and transgene silencing. Trends Plant Sci 3:97–104. doi:10.1016/S1360-1385(97)01194-1 CrossRefGoogle Scholar
  41. Lansdorp PM, Verwoerd NP, van de Rijke FM, Dragowska V, Little MT, Dirks RW, Raap AK, Tanke HJ (1996) Heterogeneity in telomere length of human chromosomes. Hum Mol Genet 5:685–691. doi:10.1093/hmg/5.5.685 PubMedCrossRefGoogle Scholar
  42. Li D, Zhang Y, Hu X, Shen X, Ma L, Su Z, Wang T, Dong J (2011) Transcriptional profiling of Medicago truncatula under salt stress identified a novel CBF transcription factor MtCBF4 that plays an important role in abiotic stress responses. BMC Plant Biol 11:109. doi:10.1186/1471-2229-11-109 PubMedCrossRefGoogle Scholar
  43. Lohar DP, Sharopova N, Endre G, Peñuela S, Samac D, Town C, Silverstein KA, VandenBosch KA (2006) Transcript analysis of early nodulation events in Medicago truncatula. Plant Physiol 140:221–234. doi:10.1104/pp.105.070326 PubMedCrossRefGoogle Scholar
  44. Matzke AJ, Matzke MA (1998) Position effects and epigenetic silencing of plant transgenes. Curr Opin Plant Biol 1:142–148. doi:10.1016/S1369-5266(98)80016-2 PubMedCrossRefGoogle Scholar
  45. Maunoury N, Redondo-Nieto M, Bourcy M, Van de Velde W, Alunni B, Laporte P, Durand P, Agier N, Marisa L, Vaubert D, Delacroix H, Duc G, Ratet P, Aggerbeck L, Kondorosi E, Mergaert P (2010) Differentiation of symbiotic cells and endosymbionts in Medicago truncatula nodulation are coupled to two transcriptome-switches. PLoS ONE 5:e9519. doi:10.1371/journal.pone.0009519 PubMedCrossRefGoogle Scholar
  46. Neves LO, Duque SRL, Almeida JS, Fevereiro PS (1999) Repetitive somatic embryogenesis in Medicago truncatula ssp. Narbonensis and M. truncatula Gaertn cv. Jemalong. Plant Cell Rep 18:398–405. doi:10.1007/s002990050593 CrossRefGoogle Scholar
  47. Ohmido N, Ishimaru A, Kato S, Sato S, Tabata S, Fukui K (2010) Integration of cytogenetic and genetic linkage maps of Lotus japonicus, a model plant for legumes. Chromosome Res 18:287–299. doi:10.1007/s00412-004-0315-3 PubMedCrossRefGoogle Scholar
  48. Oldroyd GE, Downie JA (2008) Coordinating nodule morphogenesis with rhizobial infection in legumes. Annu Rev Plant Biol 59:519–546. doi:10.1146/annurev.arplant.59.032607.092839 PubMedCrossRefGoogle Scholar
  49. Pedrosa A, Sandal N, Stougaard J, Schweizer D, Bachmair A (2002) Chromosomal map of the model legume Lotus japonicus. Genetics 161:1661–1672PubMedGoogle Scholar
  50. Pedrosa-Harand A, Kami J, Gepts P, Geffroy V, Schweizer D (2009) Cytogenetic mapping of common bean chromosomes reveals a less compartmentalized small-genome plant species. Chromosome Res 17:405–417. doi:10.1146/annurev.arplant.59.032607.092839 PubMedCrossRefGoogle Scholar
  51. Phan HT, Ellwood SR, Hane JK, Ford R, Materne M, Oliver RP (2007) Extensive macrosynteny between Medicago truncatula and Lens culinaris ssp. culinaris. Theor Appl Genet 114:549–558. doi:10.1007/s00122-006-0455-3 PubMedCrossRefGoogle Scholar
  52. Pires AS, Cabral MG, Fevereiro P, Stoger E, Abranches R (2008) High levels of stable phytase accumulate in the culture medium of transgenic Medicago truncatula cell suspension cultures. Biotechnol J 3:916–923. doi:10.1002/biot.200800044 PubMedCrossRefGoogle Scholar
  53. Porceddu A, Panara F, Calderini O, Molinari L, Taviani P, Lanfaloni L, Scotti C, Carelli M, Scaramelli L, Bruschi G, Cosson V, Ratet P, de Larembergue H, Duc G, Piano E, Arcioni S (2008) An Italian functional genomic resource for Medicago truncatula. BMC Res Notes 1:129. doi:10.1186/1756-0500-1-129 PubMedCrossRefGoogle Scholar
  54. Puckette MC, Weng H, Mahalingam R (2007) Physiological and biochemical responses to acute ozone-induced oxidative stress in Medicago truncatula. Plant Physiol Biochem 45:70–79. doi:10.1016/j.plaphy.2006.12.004 PubMedCrossRefGoogle Scholar
  55. Rispail N, Kaló P, Kiss GB, Ellis THN, Gallardo K, Thompson RD, Prats E, Larrainzar E, Ladrera R, González EM, Arrese-Igor C, Ferguson BJ, Gresshoff PM, Rubiales D (2009) Model legumes to contribute to Faba bean breeding. Field Crops Res 115:253–269. doi:10.1016/j.fcr.2009.03.014 CrossRefGoogle Scholar
  56. Robledo G, Lavia GI, Seijo G (2009) Species relations among wild Arachis species with the A genome as revealed by FISH mapping of rDNA loci and heterochromatin detection. Theor Appl Genet 118:1295–1307. doi:10.1007/s00122-009-0981-x PubMedCrossRefGoogle Scholar
  57. Rosato M, Castro M, Rosselló JA (2008) Relationships of the woody Medicago species (section Dendrotelis) assessed by molecular cytogenetic analyses. Ann Bot 102:15–22. doi:10.1093/aob/mcn055 PubMedCrossRefGoogle Scholar
  58. Rose RJ, Nolan KE, Bicego L (1999) The development of the highly regenerable seed line Jemalong 2HA for transformation of Medicago truncatula: implications for regenerability via somatic embryogenesis. J Plant Physiol 155:788–791CrossRefGoogle Scholar
  59. Sandal N, Krusell L, Radutoiu S, Olbryt M, Pedrosa A, Stracke S, Sato S, Kato T, Tabata S, Parniske M, Bachmair A, Ketelsen T, Stougaard J (2002) A genetic linkage map of the model legume Lotus japonicus and strategies for fast mapping of new loci. Genetics 161:1673–1683PubMedGoogle Scholar
  60. Santos AP, Abranches R, Stoger E, Beven A, Viegas W, Shaw PJ (2002) The architecture of interphase chromosomes and gene positioning are altered by changes in DNA methylation and histone acetylation. J Cell Sci 115:4597–4605. doi:10.1242/jcs.00160 PubMedCrossRefGoogle Scholar
  61. Santos AP, Wegel E, Allen GC, Thompson WF, Stoger E, Shaw P, Abranches R (2006) In situ methods to localize transgenes and transcripts in interphase nuclei: a tool for transgenic plant research. Plant Methods 2:18. doi:10.1186/1746-4811-2-18 PubMedCrossRefGoogle Scholar
  62. Schnabel E, Kulikova O, Penmetsa RV, Bisseling T, Cook DR, Frugoli J (2003) An integrated physical, genetic and cytogenetic map around the sunn locus of Medicago truncatula. Genome 46:665–672. doi:10.1139/G03-019 PubMedCrossRefGoogle Scholar
  63. Seijo JG, Fernández A (2001) Cytogenetic analysis in Lathyrus japonicus Willd. (Leguminosae). Caryologia 54:173–179Google Scholar
  64. Svitashev SK, Somers DA (2001) Genomic interspersions determine the size and complexity of transgene loci in transgenic plants produced by microprojectile bombardment. Genome 44:691–697. doi:10.1139/gen-44-4-691 PubMedCrossRefGoogle Scholar
  65. Tadege M, Wen J, He J, Tu H, Kwak Y, Eschstruth A, Cayrel A, Endre G, Zhao PX, Chabaud M, Ratet P, Mysore KS (2008) Large-scale insertional mutagenesis using the Tnt1 retrotransposon in the model legume Medicago truncatula. Plant J 54:335–347. doi:10.1111/j.1365-313X.2008.03418.x PubMedCrossRefGoogle Scholar
  66. Talukdar D (2009) Dwarf mutations in grass pea (Lathyrus sativus L.): origin, morphology, inheritance and linkage studies. J Genet 88:165–175. doi:10.1007/s12041-009-0024-z PubMedCrossRefGoogle Scholar
  67. Thoquet P, Ghérardi M, Journet EP, Kereszt A, Ané JM, Prosperi JM, Huguet T (2002) The molecular genetic linkage map of the model legume Medicago truncatula: an essential tool for comparative legume genomics and the isolation of agronomically important genes. BMC Plant Biol 2:1. doi:10.1186/1471-2229-2-1 PubMedCrossRefGoogle Scholar
  68. Trindade I, Capitão C, Dalmay T, Fevereiro MP, Santos DM (2010) miR398 and miR408 are up-regulated in response to water deficit in Medicago truncatula. Planta 231:705–716. doi:10.1007/s00425-009-1078-0 PubMedCrossRefGoogle Scholar
  69. Trinh T, Ratet P, Kondorosi E, Durand P, Kamaté K, Bauer P, Kondorosi A (1998) Rapid and efficient transformation of diploid Medicago truncatula and Medicago sativa ssp. falcata in vitro lines improved in somatic embryogenesis. Plant Cell Rep 17:345–355. doi:10.1007/s002990050405 CrossRefGoogle Scholar
  70. Twyman RM, Stoger E, Schillberg S, Christou P, Fischer R (2003) Molecular farming in plants: host systems and expression technology. Trends Biotechnol 21:570–578. doi:10.1016/j.tibtech.2003.10.002 PubMedCrossRefGoogle Scholar
  71. van Gijlswijk RP, Zijlmans HJ, Wiegant J, Bobrow MN, Erickson TJ, Adler KE, Tanke HJ, Raap AK (1997) Fluorochrome-labeled tyramides: use in immunocytochemistry and fluorescence in situ hybridization. J Histochem Cytochem 45:375–382PubMedCrossRefGoogle Scholar
  72. Veereshlingam H, Haynes JG, Penmetsa RV, Cook DR, Sherrier DJ, Dickstein R (2004) Nip, a symbiotic Medicago truncatula mutant that forms root nodules with aberrant infection threads and plant defense-like response. Plant Physiol 136:3692–3702. doi:10.1104/pp.104.049064 PubMedCrossRefGoogle Scholar
  73. Wais RJ, Galera C, Oldroyd G, Catoira R, Penmetsa RV, Cook D, Gough C, Denarié J, Long SR (2000) Genetic analysis of calcium spiking responses in nodulation mutants of Medicago truncatula. Proc Natl Acad Sci USA 97:13407–13412. doi:10.1073ypnas.230439797 PubMedCrossRefGoogle Scholar
  74. Yang S, Gao M, Xu C, Gao J, Deshpande S, Lin S, Roe BA, Zhu H (2008) Alfalfa benefits from Medicago truncatula: the RCT1 gene from M. truncatula confers broad-spectrum resistance to anthracnose in alfalfa. Proc Natl Acad Sci USA 105:12164–12169. doi:10.1073/pnas.0802518105 PubMedCrossRefGoogle Scholar
  75. Young ND, Udvardi MK (2009) Translating Medicago truncatula genomics to crop legumes. Curr Opin Plant Biol 12:193–201. doi:10.1016/j.pbi.2008.11.005 PubMedCrossRefGoogle Scholar
  76. Zhao J, Dixon R (2009) MATE transporters facilitate vacuolar uptake of epicatechin 3′-o-glucoside for proanthocyanidin biosynthesis in Medicago truncatula and Arabidopsis. Plant Cell 21:2323–2340. doi:10.1105/tpc.109.067819 PubMedCrossRefGoogle Scholar
  77. Zhong XB, Lizardi PM, Huang X-H, Bray-Ward PL, Ward DC (2001) Visualization of oligonucleotide probes and point mutations in interphase nuclei and DNA fibers using rolling circle DNA amplification. Proc Natl Acad Sci USA 98:3940–3945. doi:10.1073/pnas.061026198 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • A. S. Pires
    • 1
  • N. Geraldo
    • 1
  • T. Cerqueira
    • 1
  • R. Abranches
    • 1
  1. 1.Plant Cell Biology Laboratory, Instituto de Tecnologia Química e BiológicaUniversidade Nova de LisboaOeirasPortugal

Personalised recommendations