Molecular Breeding

, Volume 30, Issue 2, pp 1131–1142 | Cite as

Genotyping selection for resistance against tomato yellow leaf curl virus (TYLCV) conferred by Ty-1 and Ty-3 genes in tomato

  • José M. González-Cabezuelo
  • Juan Capel
  • Jesús Abad
  • Diego M. Tomás
  • Rafael Fernández-Muñoz
  • Enrique Moriones
  • Rafael LozanoEmail author


The tomato yellow leaf curl virus (TYLCV), transmitted by whitefly, causes major disease losses to tomato crops in tropical and subtropical regions of the world. Several genes conferring resistance to TYLCV, mainly Ty-1 and Ty-3 genes, have been introgressed to cultivated tomato (Solanum lycopersicum) from the wild relative species Solanum chilense. By combining bulked segregant analysis and amplified fragment length polymorphisms (AFLP), several AFLP markers closely linked to Ty-1 and Ty-3 genes were identified from the resistant breeding line TZ841-4. Cloning and sequencing of the selected AFLP fragments allowed us to develop codominant cleaved amplified polymorphic sequence and dominant sequence characterized amplified region markers closely linked to Ty-1. In addition, Ty-3-linked allelic-specific markers have been discriminated by a quantitative real-time PCR protocol. Taken together, these markers constitute useful tools for marker-assisted selection breeding programs to improve genetic resistance to TYLCV, and also to initiate map-based cloning approaches to isolate the resistance genes.


Disease resistance TYLCV Marker-assisted selection AFLP SCAR CAPS 



We thank Fernando J. Yuste-Lisbona for critical reading of the manuscript and Eduardo R. Bejarano for providing the infectious clone of TYLCV-IL. This work was supported by grants from Ministerio de Ciencia e Innovación (AGL2007-66062-C02-01 and 05-0004) and Junta de Andalucía (IDEA 130278D). We also thank Campus de Excelencia Internacional Agroalimentario, CeiA3 for providing financial support.

Supplementary material

11032_2012_9701_MOESM1_ESM.jpg (49 kb)
Supplementary material 1 (JPG 49 kb)
11032_2012_9701_MOESM2_ESM.doc (41 kb)
Electronic Supplementary Material Table 1. AFLP primer combinations used in the BSA approach (DOC 41 kb)
11032_2012_9701_MOESM3_ESM.doc (33 kb)
Electronic Supplementary Material Table 2. Universality of markers linked to Ty-1 and Ty-3 resistance genes (DOC 33 kb)


  1. Anbinder I, Reuveni M, Azari R, Paran I, Nahon S, Shlomo H, Chen L, Lapidot M, Levin I (2009) Molecular dissection of Tomato yellow leaf curl virus (TYLCV) resistance in tomato line TY172 derived from Solanum peruvianum. Theor Appl Genet 119(3):519–530PubMedCrossRefGoogle Scholar
  2. Banerjee MK, Kalloo G (1987) Inheritance of tomato leaf curl virus resistance in Lycopersicon hirsutum f. glabratum. Euphytica 36:581–584CrossRefGoogle Scholar
  3. Brugmans B, van der Hulst RGM, Visser RGF, Lindhout P, van Eck HJ (2003) A new and versatile method for the successful conversion of AFLP markers into simple single locus markers. Nucleic Acids Res 31(10):e55PubMedCrossRefGoogle Scholar
  4. Costa HS, Brown JK, Sivasupramaniam S, Bird J (1993) Regional distribution, insecticide resistance, and reciprocal crosses between the A-and B-biotypes of Bemisia tabaci. Insect Sci Appl 14:255–266Google Scholar
  5. Czosnek, H (ed) (2007) Tomato yellow leaf curl virus disease: Management, molecular biology, breeding for resistance. Springer, BerlinGoogle Scholar
  6. Feng Y, Wu Q, Wang S, Chang X, Xie W, Xu B, Zhang Y (2010) Cross-resistance study and biochemical mechanisms of thiamethoxam resistance in B-biotype Bemisia tabaci (Hemiptera: Aleyrodidae). Pest Manag Sci 66(3):313–318PubMedCrossRefGoogle Scholar
  7. Fernández E, Grávalos C, Haro PJ, Cifuentes D, Bielza P (2009) Insecticide resistance status of Bemisia tabaci Q-biotype in south-eastern Spain. Pest Manag Sci 65(8):885–891PubMedCrossRefGoogle Scholar
  8. Ferreira ID, do Rosario VE, Cravo PVL (2006) Real-time quantitative PCR with SYBR Green I detection for estimating copy numbers of nine drug resistance candidate genes in Plasmodium falciparum. Malar J 5:1. doi: 10.1186/1475-2875-5-1 PubMedCrossRefGoogle Scholar
  9. Foolad MR, Sharma A (2005) Molecular markers as selection tools in tomato breeding. Acta Hortic 695:225–240Google Scholar
  10. Garcia BE, Mejia L, Melgar S, Teni R, Sánchez-Pérez A, Barillas AC, Montes L, Keuler NS, Salus MS, Havey MJ, Maxwell DP (2008) Effectiveness of the Ty-3 introgression for conferring resistance in F3 families of tomato to bipartite begomoviruses in Guatemala. Tomato Genet Coop Rep 58:22–28Google Scholar
  11. García-Cano E, Resende RO, Boiteux LS, Giordano LB, Fernández-Muñoz R, Moriones E (2008) Phenotypic expression, stability, and inheritance of a recessive resistance to monopartite begomoviruses associated with tomato yellow leaf curl disease in tomato. Phytopathology 98:618–627PubMedCrossRefGoogle Scholar
  12. Giordano LB, Silva-Lobo VL, Santana FM, Fonseca MEN, Boiteux LS (2005) Inheritance of resistance to the bipartite Tomato chlorotic mottle begomovirus derived from Lycopersicon esculentum cv. ‘Tyking’. Euphytica 143:27–33CrossRefGoogle Scholar
  13. Haanstra JPV, Wye C, Verbakel H, Meijer-Dekens F, van den Berg P, Odinot P, van Heusden AW, Tanksley SD, Lindhout P, Peleman J (1999) An integrated high-density RFLP-AFLP map of tomato based on two Lycopersicon esculentum × L. pennellii F2 populations. Theor Appl Genet 99:254–271CrossRefGoogle Scholar
  14. Hanson PM, Bernacchi D, Green S, Tanksley SD, Muniyappa V, Padmaja AS, Chen H, Kuo G, Fang D, Chen J (2000) Mapping a wild tomato introgression associated with tomato yellow leaf curl virus resistance in a cultivated tomato line. J Am Soc Hort Sci 15:15–20Google Scholar
  15. Hanson P, Green SK, Kuo G (2006) Ty2, a gene in chromosome 11 conditioning geminivirus resistance in tomato. Tomato Genet Coop Rep 56:17–18Google Scholar
  16. Hassan AA, Abdel-Ati KEA (1999) Genetics of tomato yellow leaf curl virus tolerance derived from Lycopersicon pimpinellifolium and Lycopersicon pennellii. Egypt J Hort 26:323–338Google Scholar
  17. Ji Y, Schuster DJ, Scott JW (2007a) Ty-3, a begomovirus resistance locus near the Tomato yellow leaf curl virus resistance locus Ty-1 on chromosome 6 of tomato. Mol Breed 20:271–284CrossRefGoogle Scholar
  18. Ji Y, Salus MS, Van Betteray B, Smeets J, Jensen KS, Martin CT, Mejia L, Scott JW, Havey MJ, Maxwell DP (2007b) Co-dominant SCAR markers for detection of the Ty-3 and Ty-3a loci form Solanum chilense at 25 cM of Chromosome 6 of tomato. Tomato Genet Coop Rep 57:25–28Google Scholar
  19. Ji Y, Scott JW, Schuster DJ (2009) Molecular mapping of Ty-4, a new tomato yellow leaf curl virus resistance locus on chromosome 3 of tomato. J Am Soc Hort Sci 134(2):281–288Google Scholar
  20. Jiang J, Nasuda S, Dong F, Scherrer CW, Woo SS, Wing RA, Gill BS, Ward DC (1996) A conserved repetitive DNA element located in the centromeres of cereal chromosomes. Proc Natl Acad Sci USA 93:14210–14213PubMedCrossRefGoogle Scholar
  21. Kalloo G, Banerjee MK (1990) Transfer of tomato leaf curl virus resistance from Lycopersicon hirsutum f. glabratum to L. esculentum. Plant Breed 105:156–159CrossRefGoogle Scholar
  22. Kasrawi MA (1989) Inheritance of resistance to tomato yellow leaf curl virus (TYLCV) in Lycopersicon pimpinellifolium. Plant Dis 73:435–437CrossRefGoogle Scholar
  23. Kosambi DD (1944) The estimation of map distance from recombination values. Ann Eugen 12:172–175CrossRefGoogle Scholar
  24. Lapidot M, Ben-Joseph R, Cohen L, Machbash Z, Levy D (2006) Development of a scale for evaluation of Tomato yellow leaf curl virus resistance level in tomato plants. Phytopathology 96:1404–1408PubMedCrossRefGoogle Scholar
  25. Laterrot H (1992) Resistance genitors to Tomato yellow leaf curl virus (TYLCV). Tomato Leaf Curl Newsl 1:2–4Google Scholar
  26. Liu J, Liu D, Tao W, Li W, Wang S, Cheng P, Cheng S, Gao D (2000) Molecular marker-facilitated pyramiding of different genes for powdery mildew resistance in wheat. Plant Breed 119:21–24CrossRefGoogle Scholar
  27. Livak KJ, Schmittgen D (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25(4):402–408PubMedCrossRefGoogle Scholar
  28. Meksem K, Ruben E, Hyten DL, Schmidt ME, Lightfoot DA (2001) High-throughput genotyping for a polymorphism linked to soybean cyst nematode resistance gene Rhg4 by using Taqman probes. Mol Breed 77:63–71CrossRefGoogle Scholar
  29. Michelmore RW, Paran I, Kesseli RV (1991) Identification of markers linked to disease-resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. Proc Natl Acad Sci USA 88:9828–9832PubMedCrossRefGoogle Scholar
  30. Monci F, Sánchez-Campos S, Navas-Castillo J, Moriones E (2002) A natural recombinant between the Geminiviruses Tomato yellow leaf curl Sardinia virus and Tomato yellow leaf curl virus exhibits a novel pathogenic phenotype and is becoming prevalent in Spanish populations. Virology 302:317–326CrossRefGoogle Scholar
  31. Moriones E, Navas-Castillo J (2000) Tomato yellow leaf curl virus, an emerging virus complex causing epidemics worldwide. Virus Res 71:123–134PubMedCrossRefGoogle Scholar
  32. Navas-Castillo J, Sanchez-Campos S, Diaz JA, Saez-Alonso E, Moriones E (1999) Tomato yellow leaf curl virus-is causes a novel disease of common bean and severe epidemics in tomato in Spain. Plant Dis 83:29–32CrossRefGoogle Scholar
  33. Omer AD, Tabashnik BE, Johnson MW, Costa HS, Ullman DE (1993) Sweetpotato whitefly resistance to insecticides in Hawaii: intra-island variation is related to insecticide use. Entomol Exp Appl 67:173–182CrossRefGoogle Scholar
  34. Perez de Castro A, Blanca JM, Diez MJ, Nuez Viñals F (2007) Identification of a CAPS marker tightly linked to the tomato yellow leaf curl disease resistance gene Ty-1 in tomato. Eur J Plant Pathol 117:347–356CrossRefGoogle Scholar
  35. Pico B, Diez MJ, Nuez F (1996) Viral diseases causing the greatest economic losses to the tomato crop. 2. The tomato yellow leaf curl virus—a review. Sci Hort 67:151–196CrossRefGoogle Scholar
  36. Pico B, Ferriol M, Díez MJ, Nuez F (1999) Developing tomato breed lines resistant to Tomato Yellow Leaf Curl Virus. Plant Breed 118(6):537–542CrossRefGoogle Scholar
  37. Pilowsky M, Cohen S (1974) Inheritance of resistance to tomato yellow leaf curl virus in tomatoes. Phytopathology 64:632–635CrossRefGoogle Scholar
  38. Pilowsky M, Cohen S (2000) Screening additional wild tomatoes for resistance to the whitefly-borne Tomato yellow leaf curl virus. Acta Physiol Plant 22:351–353CrossRefGoogle Scholar
  39. Ponchel F, Toomes C, Bransfield K, Leong FT, Douglas SH, Field SL, Bell SM, Combaret V, Puisieux A, Mighell AJ, Robinson PA, Inglehearn CF, Isaacs JD, Markham AF (2003) Real-time PCR based on SYBR-Green I fluorescence: an alternative to the TaqMan assay for a relative quantification of gene rearrangements, gene amplifications and micro gene deletions. BMC Biotechnol 3:18PubMedCrossRefGoogle Scholar
  40. Qu LJ, Foote TN, Roberts MA, Money TA, Aragón-Alcaide L, Snape JW, Moore G (1998) A simple PCR-based method for scoring the ph1b deletion in wheat. Theor Appl Genet 96:371–375CrossRefGoogle Scholar
  41. Rick CM, Forbes JA (1974) Association of an allozyme with nematode resistance. Tomato Genet Coop Rep 24:25Google Scholar
  42. Rozen S, Skaletsky HJ (2000) Primer3 on the WWW for general users and for biologist programmers. In: Krawetz S, Misener S (eds) Bioinformatics methods and protocols: methods in molecular biology. Humana Press, Totowa, pp 365–386Google Scholar
  43. Schuster DJ, Mann RS, Toapanta M, Cordero R, Thompson S, Cyman S, Shurtleff A, Morris RF (2010) Monitoring neonicotinoid resistance in biotype B of Bemisia tabaci in Florida. Pest Manag Sci 66(2):186–195PubMedGoogle Scholar
  44. Scott JW (2007) Breed for resistance to viral pathogens. In: Razdan MK, Mattoo AK (eds) Genetic improvement of solanaceous crops. Science Publisher, Inc., Enfield, pp 447–474Google Scholar
  45. Siebert PD, Chenchik A, Kellogg DE, Lukyanov KA, Lukyanov SA (1995) An improved PCR method for walking in uncloned genomic DNA. Nucleic Acids Res 23(6):1087–1088PubMedCrossRefGoogle Scholar
  46. Van Ooijen JW (2006) JoinMap 4, software for the calculation of genetic linkage maps in experimental populations. B.V. Kyazma, WageningenGoogle Scholar
  47. Vandemark GJ, Miklas PN (2002) A fluorescent PCR assay for the codominant interpretation of a dominant SCAR marker linked to the virus resistance gene bc-1 2 in common bean. Mol Breed 10:193–201CrossRefGoogle Scholar
  48. Vandemark GJ, Miklas PN (2005) Genotyping common bean for the potyvirus resistance alleles I and bc-1 2 with a multiplex real-time PCR assay. Phytopathology 95:499–505PubMedCrossRefGoogle Scholar
  49. Vandemark GJ, Fourie D, Miklas PN (2008) Genotyping with real-time PCR reveals recessive epistasis between independent QTL conferring resistance to common bacterial blight in dry bean. Theor Appl Genet 117:513–522PubMedCrossRefGoogle Scholar
  50. Verlaan MG, Szinay D, Hutton SF, de Jong H, Kormelink R, Risser RGF, Scott JW, Bai Y (2011) Chromosomal rearrangements between tomato and Solanumchilense hamper mapping and breeding of the TYLCV resistance gene Ty-1. Plant J 68:1093–1103PubMedCrossRefGoogle Scholar
  51. Vidavsky F, Czosnek H (1998) Tomato breed lines resistant and tolerant to tomato yellow leaf curl virus issued from Lycopersicon hirsutum. Phytopathology 88:910–914PubMedCrossRefGoogle Scholar
  52. Vidavsky F, Czosnek H, Gazit S, Levy D, Lapidot M (2008) Pyramiding of genes conferring resistance to Tomato yellow leaf curl virus from different wild tomato species. Plant Breed 127:625–631CrossRefGoogle Scholar
  53. Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M, Zabeau M (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23(21):4407–4414PubMedCrossRefGoogle Scholar
  54. Williamson VM, Colwell G (1991) Acid phosphatase-1 from nematode resistant tomato: isolation and characterization of its gene. Plant Physiol 97:131–146CrossRefGoogle Scholar
  55. Williamson VM, Ho JY, Wu FF, Miller N, Kaloshian I (1994) A PCR-based marker tightly linked to the nematode resistance gene, Mi, in tomato. Theor Appl Genet 87:757–763CrossRefGoogle Scholar
  56. Zamir D, Ekstein-Michelson I, Zakay Y, Navot N, Zeidan M, Sarfatti M, Eshed Y, Harel E, Pleban T, Vanoss H, Kedar N, Rabinowitch HD, Czosnek H (1994) Mapping and introgression of a tomato yellow leaf curl virus tolerance gene, TY-1. Theor Appl Genet 88:141–146CrossRefGoogle Scholar
  57. Zhang LP, Khan A, Niño-Liu D, Foolad MR (2002) A molecular linkage map of tomato displaying chromosomal locations of the resistance gene analogs based on a Lycopersicon esculentum × Lycopersicon hirsutum cross. Genome 45:133–146PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • José M. González-Cabezuelo
    • 1
  • Juan Capel
    • 1
  • Jesús Abad
    • 2
  • Diego M. Tomás
    • 3
  • Rafael Fernández-Muñoz
    • 3
  • Enrique Moriones
    • 3
  • Rafael Lozano
    • 1
    Email author
  1. 1.Departamento de Biología Aplicada (Genética), Edificio CITE II-B, Centro de Investigación en Biotecnología AgroalimentariaUniversidad de AlmeríaAlmeríaSpain
  2. 2.Zeta SeedsAlmeríaSpain
  3. 3.Instituto de Hortofruticultura Subtropical Mediterránea La MayoraUMA-CSICMálagaSpain

Personalised recommendations