Molecular Breeding

, Volume 30, Issue 2, pp 661–669 | Cite as

Development of microsatellite markers in autopolyploid sugarcane and comparative analysis of conserved microsatellites in sorghum and sugarcane

  • Brandon T. James
  • Cuixia Chen
  • Arthur Rudolph
  • Kankshita Swaminathan
  • Jan E. Murray
  • Jong-Kuk Na
  • Ashley K. Spence
  • Brandon Smith
  • Matthew E. Hudson
  • Stephen P. Moose
  • Ray Ming
Article

Abstract

Sugarcane has become an increasingly important first-generation biofuel crop in tropical and subtropical regions. It has a large, complex, polyploid genome that has hindered the progress of genomic research and marker-assisted selection. Genetic mapping and ultimately genome sequence assembly require a large number of DNA markers. Simple sequence repeats (SSRs) are widely used in genetic mapping because of their abundance, high rates of polymorphism, and ease of use. The objectives of this study were to develop SSR markers for construction of a saturated genetic map and to characterize the frequency and distribution of SSRs in a polyploid genome. SSR markers were mined from expressed sequence tag (EST), reduced representation library genomic sequences, and bacterial artificial chromosome (BAC) sequences. A total of 5,675 SSR markers were surveyed in a segregating population. The overall successful amplification and polymorphic rates were 87.9 and 16.4%, respectively. The trinucleotide repeat motifs were most abundant, with tri- and hexanucleotide motifs being the most abundant for the ESTs. BAC and genomic SSRs were mostly AT-rich while the ESTs were relatively GC-rich due to codon bias. These markers were also aligned to the sorghum genome, resulting in 1,203 markers mapped in the sorghum genome. This set of SSRs conserved in sugarcane and sorghum would be the most informative for mapping quantitative trait loci in sugarcane and for comparative genomic analyses. This large collection of SSR markers is a valuable resource for sugarcane genomic research and crop improvement.

Keywords

DNA marker Genetic mapping Polyploid Short sequence repeat 

Supplementary material

11032_2011_9651_MOESM1_ESM.xls (2.6 mb)
Supplementary material 1 (XLS 2623 kb)
11032_2011_9651_MOESM2_ESM.xls (1.6 mb)
Supplementary material 2 (XLS 1619 kb)
11032_2011_9651_MOESM3_ESM.doc (70 kb)
Supplementary material 3 (DOC 70 kb)
11032_2011_9651_MOESM4_ESM.xls (676 kb)
Supplementary material 4 (XLS 676 kb)

References

  1. Aitken KS, Jackson PA, McIntyre CL (2005) A combination of AFLP and SSR markers provides extensive map coverage and identification of hom(oe)ologous linkage groups in sugarcane. Theor Appl Genet 110:789–801PubMedCrossRefGoogle Scholar
  2. Al-Janabi SM, Honeycutt RJ, Peterson C, Sobral BWS (1993) A genetic link-age map of Saccharum spontaneum L. ‘SES 208’. Genetics 134:1249–1260PubMedGoogle Scholar
  3. Beckman JS, Soller M (1984) Restriction fragment length polymorphisms in genetic improvement: methodologies, mapping and costs. Theor Appl Genet 67:35–43CrossRefGoogle Scholar
  4. Brandes EW (1958) Origin, classification and characteristics. In: Artschwager E, Brandes EW (eds) Sugarcane (Saccharum officinarum L). Agric Handbk (U.S. Dept. Agric.) 122:1–35Google Scholar
  5. Chen C, Yu Q, Hou S, Li Y, Eustice M, Skelton RL, Veatch O, Herdes RE, Diebold L, Saw J, Feng Y, Qian W, Bynum L, Wang L, Moore PH, Paull RE, Alam M, Ming R (2007) Construction of a sequence-tagged high-density genetic map of papaya for comparative structural and evolutionary genomics in Brassicales. Genetics 177:2481–2491PubMedCrossRefGoogle Scholar
  6. Chin EC, Senior ML, Shu H, Smith JS (1996) Maize simple repetitive DNA sequences: abundance and allele variation. Genome 39:866–873PubMedCrossRefGoogle Scholar
  7. da Silva JA (2001) Preliminary analysis of microsatellite markers derived from sugarcane ESTs. Genet Mol Biol 24:155–159CrossRefGoogle Scholar
  8. da Silva JA, Sorrells ME, Burnquist W, Tanksley SD (1993) RFLP linkage map and genome analysis of Saccharum spontaneum. Genome 36:782–791PubMedCrossRefGoogle Scholar
  9. da Silva JA, Honeycutt RJ, Burnquist W, Al-Janabi SM, Sorrells ME, Tanksley SD, Sorbral WS (1995) Saccharum spontaneum L. ‘SES 208’ genetic linkage map combining RFLP- and CR-based markers. Mol Breed 1:165–179CrossRefGoogle Scholar
  10. Daniels J, Ashley JB, Daniels C (1980) The 1914 sugarcane collecting expedition to New Guinea. Sugarcane Breed Newsl 43:24–38Google Scholar
  11. Goldstein DB, Schlotterer C (1999) Microsatellites: evolution and applications. Oxford University Press, OxfordGoogle Scholar
  12. Grassl CO (1977) The origin of the sugar producing cultivars of Saccharum. Sugarcane Breed Newsl 39:8–33Google Scholar
  13. Grivet L, D’Hont A, Roques D, Feldmann P, Lanaud C, Glaszmann J (1996) RFLP mapping in cultivated sugarcane (Saccharum spp.): genome organization in a highly polyploid and aneuploid interspecific hybrid. Genetics 142:987–1000PubMedGoogle Scholar
  14. Gupta PK, Balyan HS, Sharma PC, Ramesh B (1996) Microsatellites in plants: a new class of molecular markers. Curr Sci 70:45–53Google Scholar
  15. Heichel GH (1974) Comparative efficiency of energy use in crop production. Bull Conn Agric Exp Stn 739:1–26Google Scholar
  16. Hoarau JY, Offmann B, D’Hont A, Risterucci AM, Roques D, Glaszmann J, Grivet L (2001) Genetic dissection of a modern sugarcane cultivar (Saccharum spp.). I. Genome mapping with AFLP markers. Theor Appl Genet 103:84–97CrossRefGoogle Scholar
  17. Jakob K, Zhou F, Paterson A (2009) Genetic improvement of C4 grasses as cellulosic biofuel feedstocks. In Vitro Cell Dev Biol Plant 45:291–305CrossRefGoogle Scholar
  18. Kashi Y, King D, Soller M (1997) Simple sequence repeats as a source of quantitative genetic variation. Trends Genet 13:74–78PubMedCrossRefGoogle Scholar
  19. La Rota M, Kantety RV, Yu JK, Sorrells ME (2005) Nonrandom distribution and frequencies of genomic and EST-derived microsatellite markers in rice, wheat, and barley. BMC Genomics 6:23PubMedCrossRefGoogle Scholar
  20. Lam E, Shine J Jr, da Silva J, Lawton M, Bonos S, Calvino M, Carrer H, Silva-Filho MC, Glynn N, Helsel Z, Ma J, Richard E Jr, Souza G, Ming R (2009) Improving sugarcane for biofuel: engineering for an even better feedstock. Glob Change Biol Bioenergy 1:251–255CrossRefGoogle Scholar
  21. Ming R, Liu SC, Lin YR, Braga D, da Silva J, van Deynze A, Wenslaff TF, Wu KK, Moore PH, Burnquist W, Sorrells ME, Irvine JE, Paterson AH (1998) Alignment of Sorghum and Saccharum chromosomes: comparative organization of closely-related diploid and polyploidy genomes. Genetics 150:1663–1682PubMedGoogle Scholar
  22. Parida SK, Kalia SK, Kaul S, Dalal V, Hemaprabha G, Selvi A, Pandit A, Singh A, Gaikwad K, Sharma T, Srivastava PS, Singh NK, Mohapatra T (2009) Informative genomic microsatellite markers for efficient genotyping applications in sugarcane. Theor Appl Genet 118:327–338PubMedCrossRefGoogle Scholar
  23. Paterson AH, Bowers JE, Bruggmann R, Dubchak I, Grimwood J, Gundlach H, Haberer G, Hellsten U, Mitros T, Poliakov A, Schmutz J, Spannagl M, Tang H, Wang X, Wicker T, Bharti AK, Chapman J, Feltus FA, Gowik U, Grigoriev IV, Lyons E, Maher CA, Martis M, Narechania A, Otillar RP, Penning BW, Salamov AA, Wang Y, Zhang L, Carpita NC, Freeling M, Gingle AR, Hash CT, Keller B, Klein P, Kresovich S, McCann MC, Ming R, Peterson DG, Rahman M, Ware D, Westhoff P, Mayer KFX, Messing J, Rokhsar DS (2009) The Sorghum bicolor genome and the diversification of grasses. Nature 457:551–556Google Scholar
  24. Pinto LR, Oliveira KM, Ulian EC, Garcia AA, de Souza AP (2004) Survey in the sugarcane expressed sequence tag database (SUCEST) for simple sequence repeats. Genome 47:795–804PubMedCrossRefGoogle Scholar
  25. Pinto LR, Oliverira KM, Marconi T, Garcia AAF, Ulian EC, de Souza AP (2006) Characterization of novel sugarcane expressed sequence tag microsatellites and their comparison with genomic SSRs. Plant Breed 125:378–384CrossRefGoogle Scholar
  26. Raboin L-M, Oliveira KM, Lecunff L, Telismart H, Roques D, Butterfield M, Hoarau J-Y, D’Hont A (2006) Genetic mapping in sugarcane, a high polyploid, using bi-parental progeny: identification of a gene controlling stalk colour and a new rust resistance gene. Theor Appl Genet 112:1382–1391PubMedCrossRefGoogle Scholar
  27. Rosen S, Skaletsky HJ (2000) Primer3 on the WWW for general users and for biologist programmers. In: Krawetz S, Misener S (eds) Bioinformatics methods and protocols: methods in molecular biology. Humana, Totowa, pp 365–386Google Scholar
  28. Thiel T, Michalek W, Varshney RK, Graner A (2003) Exploiting EST databases for the development and characterization of gene-derived SSR-markers in barley (Hordeum vulgare L.). Theor Appl Genet 106:411–422PubMedGoogle Scholar
  29. Toth G, Gaspari Z, Jurka J (2000) Microsatellites in different eukaryotic genomes: survey and analysis. Genome Res 10:967–981PubMedCrossRefGoogle Scholar
  30. Vettore AL, da Silva FR, Kemper EL, Souza GM, da Silva AM, Ferro MIT, Henrique-Silva F, Giglioti EA, Lemos MVF, Coutinho LL, Nobrega MP, Carrer H, Franca SC, Bacci M, Goldman MHS, Gomes SL, Nunes LR, Camargo LEA, Siqueira WJ, Van Sluys M, Thiemann OH, Kuramae EE, Santelli RV, Marino CL, Targon MLPN, Ferro JA, Silveira HCS, Marini DC, Lemos EGM, Monteiro-Vitorello CB, Tambor JHM, Carraro DM, Roberto PG, Martins VG, Goldman GH, de Oliveira RC, Truffi D, Colombo CA, Rossi M, de Araujo PG, Sculaccio SA, Angella A, Lima MMA, de Rosa VE, Siviero F, Coscrato VE, Machado MA, Grivet L, Di Mauro SMZ, Nobrega FG, Menck CFM, Braga MDV, Telles GP, Cara FAA, Pedrosa G, Meidanis J, Arruda P (2003) Analysis and functional annotation of an expressed sequence tag collection for tropical crop sugarcane. Genome Res 13:2725–2735PubMedCrossRefGoogle Scholar
  31. Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T, Hornes M, Friters A, Pot J, Paleman J, Kuiper M, Zabeau M (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23:4407–4414PubMedCrossRefGoogle Scholar
  32. Wang J, Chen C, Na J, Yu Q, Hou S, Paull RE, Moore PH, Alam M, Ming R (2008) Genome-wide comparative analysis of microsatellites in papaya. Trop Plant Biol 1:278–292CrossRefGoogle Scholar
  33. Wang J, Roe B, Macmil S, Yu Q, Murray JE, Tang H, Chen C, Najar F, Wiley G, Bowers J, Van Sluys M-A, Rokhsar DS, Hudson ME, Moose SP, Paterson AH, Ming R (2010) Microcollinearity between autopolyploid sugarcane and diploid sorghum genomes. BMC Genomics 11:261PubMedCrossRefGoogle Scholar
  34. Warner JN (1962) Sugarcane: an indigenous Papuan cultigen. Ethnology 1:405–411CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Brandon T. James
    • 1
    • 2
  • Cuixia Chen
    • 2
  • Arthur Rudolph
    • 2
  • Kankshita Swaminathan
    • 2
  • Jan E. Murray
    • 1
  • Jong-Kuk Na
    • 1
  • Ashley K. Spence
    • 1
    • 2
  • Brandon Smith
    • 2
  • Matthew E. Hudson
    • 2
    • 3
  • Stephen P. Moose
    • 2
    • 3
  • Ray Ming
    • 1
    • 2
  1. 1.Department of Plant BiologyUniversity of Illinois at Urbana-ChampaignUrbanaUSA
  2. 2.Energy Biosciences Institute and Institute for Genomic BiologyUniversity of Illinois at Urbana-ChampaignUrbanaUSA
  3. 3.Department of Crop SciencesUniversity of Illinois at Urbana-ChampaignUrbanaUSA

Personalised recommendations