Molecular Breeding

, Volume 30, Issue 1, pp 521–533 | Cite as

Marker-free transgenic durum wheat cv. Karim expressing the AlSAP gene exhibits a high level of tolerance to salinity and dehydration stresses

  • Rania Ben-Saad
  • Walid Ben-Ramdhan
  • Nabil Zouari
  • Jalel Azaza
  • Delphine Mieulet
  • Emmanuel Guiderdoni
  • Radhouane Ellouz
  • Afif Hassairi
Article

Abstract

We have recently isolated the AlSAP (stress-associated protein) gene from the halophyte grass Aeluropus littoralis and demonstrated that AlSAP expression improves tolerance to continuous salt and drought stresses in transgenic tobacco. To extend these findings to an important crop, we generated marker-free transgenic durum wheat plants of the commercial cv. Karim expressing the AlSAP gene. The integration and expression of AlSAP in T3 homozygous plants were ascertained by Southern, Northern and Western blotting respectively. AlSAP wheat lines exhibited improved germination rates and biomass production under severe salinity and osmotic stress conditions. Following a long-term salt or drought stress greenhouse trial, AlSAP lines produced normally filled grains whereas wild-type (WT) plants either died at the vegetative stage under salt stress or showed markedly reduced grain filling under drought stress. Measurements of the RWC (relative water content) and endogenous Na+ and K+ levels in leaves of AlSAP plants, showed a lower water loss rate and a higher Na+ accumulation in senescent-basal leaves, respectively, compared to those of WT plants. Taken together, these results extend to cereals the high potential of the AlSAP gene for engineering effective drought and salt tolerance.

Keywords

Aeluropus littoralis AlSAP Abiotic stresses Durum wheat In-embryo transformation Marker-free transgenic plants 

Notes

Acknowledgments

Special thanks are extended to Kh. Belhaj (CBS) and S. Abid (a teacher of English) for their critical review of the manuscript. This work was supported by the Ministry of Higher Education Scientific Research of Tunisia (contract programme 2006–2010), by the European project CEDROME (INCO-CT-2005-015468), Agropolis Fondation under the REFUGE platform, Montpellier France and The National Program for Sciences, Technology, & Innovation (NPST, King Saud University Saudi Arabia).

References

  1. Ayers RS, Westcot DW (1985) Water quality for agriculture. FAO Irrigation Drainage Paper 29:1–174Google Scholar
  2. Ben Saad R, Zouari N, Ben Ramdhan W, Azaza J, Meynard D, Guiderdoni E, Hassairi A (2010) Improved drought and salt stress tolerance in transgenic tobacco overexpressing a novel A20/AN1 zinc-finger “AlSAP” gene isolated from the halophyte grass Aeluropus littoralis. Plant Mol Biol 72:171–190PubMedCrossRefGoogle Scholar
  3. Chen H, Nelson RS, Sherwood JL (1994) Enhanced recovery of transformants of Agrobacterium tumifaciens after freeze–thaw transformation and drug selection. Biotechniques 16:664–668PubMedGoogle Scholar
  4. FAO (2009) Crop prospects and food situation. No. 2 April 2009Google Scholar
  5. Garfinkel DJ, Nester EW (1980) Agrobacterium tumefaciens mutants affected in crown gall tumorigenesis and octopine catabolism. J Bacteriol 144:732–743PubMedGoogle Scholar
  6. Hassairi A, Ben Saad R, Zouari N, Ben Ramdhan W, Azaza J (2008) A method for “in embryo” transformation with Agrobacterium of wheat and production of transgenic fertile plants over-expressing the AlSAP gene, isolated from the halophyte grass A. littoralis, Tunisian. Patent SN08356 17-09-2008Google Scholar
  7. Hood EE, Gelvin SB, Melchers S, Hoekema A (1993) New Agrobacterium helper plasmids for gene transfer to plant. Transgenic Res 2:208–218CrossRefGoogle Scholar
  8. Kanneganti V, Gupta AK (2008) Overexpression of OsiSAP8, a member of stress associated protein (SAP) gene family of rice confers tolerance to salt, drought and cold stress in transgenic tobacco and rice. Plant Mol Biol 66:445–462PubMedCrossRefGoogle Scholar
  9. Katerji N, van Hoorn JW, Hamdy A, Mastrorilli M, Nachit MM, Oweis T (2005) Salt tolerance analysis of chickpea, faba bean and durum wheat varieties. Agric Water Manage 72:195–207CrossRefGoogle Scholar
  10. Katerji N, Mastrorilli M, van Hoornc JW, Lahmerd FZ, Hamdyd A, Oweise T (2009) Durum wheat and barley productivity in saline-drought environments. Eur J Agron 3:1–9CrossRefGoogle Scholar
  11. Katiyar-Agarwal S, Kapoor A, Grover A (2002) Binary cloning vectors for efficient genetic transformation of rice. Curr Sci 7:873–876Google Scholar
  12. Murray MG, Thompson WF (1980) Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res 8:4321–4325PubMedCrossRefGoogle Scholar
  13. Ohira K, Ojima K, Fujiwara A (1973) Studies on the nutrition of rice cell culture 1: a simple defined medium for rapid growth in suspension culture. Plant Cell Physiol 14:1113–1121Google Scholar
  14. Rezgui M, Ben Mechlia N, Bizid E, Kalboussi R, Hayouni R (2000) Étude de la stabilité du rendement de blé dur dans différentes régions de la Tunisie. In : L’amélioration du blé dur dans la région méditerranéenne: nouveaux défis. Options méditerranéennes Sér. A: Séminaires Méditerranéennes 40:167–172Google Scholar
  15. Sakiss N, Ennabli N, Slimani MS, Baccour H (1994) La pluviométrie en Tunisie a-t-elle changé depuis 2000 ans? Recherche de tendance et de cycles dans les séries pluviométriques. Institut National de la Météorologie, 283 pGoogle Scholar
  16. Savé R, Alegre L, Pery M, Terradas J (1993) Ecophysiology of after-fire resprouts of Arbutus unedo L. Orsis 8:107–119Google Scholar
  17. Sreenivasulu N, Varshney R, Kavi Kishor P, Weschke W (2004) Functional genomics for tolerance to abiotic stress in cereals. In: Gupta, Pushpendra Kumar, Varshney RK (eds) Cereal genomics. Kluwer Academic Publishers, Dordrecht, pp 483–514Google Scholar
  18. Supartana P, Shimizu T, Nogawa M, Shioiri H, Nakajima T, Haramoto N, Nozue M, Kojima M (2006) Development of simple and efficient in-planta transformation method for wheat (Triticum aestivum L.) using Agrobacterium tumefaciens. J Biosci Bioeng 102:162–170PubMedCrossRefGoogle Scholar
  19. Turner NC (1981) Techniques and experimental approaches for the measurement of plant water status. Plant Soil 58:339–366CrossRefGoogle Scholar
  20. Vij S, Tyagi AK (2007) Emerging trends in the functional genomics of the abiotic stressresponse in crop plants. Plant Biotechnol J 5:361–380PubMedCrossRefGoogle Scholar
  21. Wang H, Qi M, Cutler AJ (1993) A simple method of preparing plant samples for PCR. Nucleic Acid Res 21:4153–4154PubMedCrossRefGoogle Scholar
  22. Zouari N, Ben Saad R, Legavre Th, Azaza J, Sabau X, Jaoua M, Masmoudi K, Hassairi A (2007) Identification and sequencing of ESTs from the halophyte grass Aeluropus littoralis. Gene 404:61–69PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Rania Ben-Saad
    • 1
  • Walid Ben-Ramdhan
    • 1
  • Nabil Zouari
    • 1
  • Jalel Azaza
    • 1
  • Delphine Mieulet
    • 2
  • Emmanuel Guiderdoni
    • 2
    • 3
  • Radhouane Ellouz
    • 1
  • Afif Hassairi
    • 1
    • 3
  1. 1.Centre of Biotechnology of Sfax (CBS); LBPAPUniversity of SfaxSfaxTunisia
  2. 2.CIRAD, UMR AGAPMontpellier Cedex 5France
  3. 3.King Saud University, CEBRRiyadhSaudi Arabia

Personalised recommendations