Molecular Breeding

, Volume 30, Issue 1, pp 429–439 | Cite as

Integration of EST-SSR markers of Medicago truncatula into intraspecific linkage map of lentil and identification of QTL conferring resistance to ascochyta blight at seedling and pod stages

  • D. Gupta
  • P. W. J. Taylor
  • P. Inder
  • H. T. T. Phan
  • S. R. Ellwood
  • P. N. Mathur
  • A. Sarker
  • R. Ford


Microsatellite markers have been extensively utilised in the leguminosae for genome mapping and identifying major loci governing traits of interest for eventual marker-assisted selection (MAS). The lack of available lentil-specific microsatellite sequences and gene-based markers instigated the mining and transfer of expressed sequence tag simple sequence repeat (EST-SSR)/SSR sequences from the model genome Medicago truncatula, to enrich an existing intraspecific lentil genetic map. A total of 196 markers, including new 15 M. truncatula EST-SSR/SSR, were mapped using a population of 94 F5 recombinant inbred lines produced from a cross between cv. Northfield (ILL5588) × cv. Digger (ILL5722) and clustered into 11 linkage groups (LG) covering 1156.4 cM. Subsequently, the size and effects of quantitative trait loci (QTL) conditioning Ascochyta lentis resistance at seedling and pod/maturity stages were characterised and compared. Three QTL were detected for seedling resistance on LG1 and LG9 and a further three were detected for pod/maturity resistance on LG1, LG4 and LG5. Together, these accounted for 34 and 61% of the total estimated phenotypic variation, respectively, and demonstrated that resistance at the different growth stages is potentially conditioned by different genomic regions. The flanking markers identified may be useful for MAS and for the future pyramiding of potentially different resistance genes into elite backgrounds that are resistant throughout the cropping season.


Ascochyta blight EST-SSR/SSR Lentil Genetic map Medicago truncatula QTL 



Area under the disease progress curve


Days after inoculation


Victorian Department of Primary Industries



We wish to thank Bioversity International, Rome, for awarding the Vavilov–Frankel Fellowship to the first author in order to support this work at the University of Melbourne. We are grateful to Dr Michael Materne of the Victorian Department of Primary Industries (VicDPI), Horsham, Victoria, Australia for providing seed and breeding advice.


  1. Ali SM (1995) Register of Australian grain legume cultivars. Lens culinaris (lentil) cv. Northfield. Aust J Exp Agr 35:181–1182CrossRefGoogle Scholar
  2. Chowdhury MA, Andrahennadi CP, Slinkard AE, Vandenberg A (2001) RAPD and SCAR markers for resistance to ascochyta blight in lentil. Euphytica 118:331–337CrossRefGoogle Scholar
  3. Churchill GA, Doerge RW (1994) Empirical threshold values for quantitative trait mapping. Genetics 18:963–971Google Scholar
  4. Durán Y, Fratini R, García P, Pérez M (2004) An intersubspecific genetic map of Lens. Theor Appl Genet 108:1265–1273PubMedCrossRefGoogle Scholar
  5. Eujayl I, Baum M, Erskine W, Pehu E, Muehlbauer FJ (1997) The use of RAPD markers for lentil genetic and the evaluation of distorted F2 segregation. Euphytica 96:405–412CrossRefGoogle Scholar
  6. Eujayl I, Baum M, Powell W, Erskine W, Pehu E (1998) A genetic linkage map of lentil (Lens sp.) based on RAPD and AFLP markers using recombinant inbred lines. Theor Appl Genet 97:83–89CrossRefGoogle Scholar
  7. Eujayl I, Sledge MK, Wang L, Chekhovskiy K, Zwonitzer JC, Mian MAR (2004) Medicago truncatula EST-SSRs reveal cross-species genetic markers for Medicago ssp. Theor Appl Genet 108:414–422PubMedCrossRefGoogle Scholar
  8. Ford R, Pang ECK, Taylor PWJ (1997) Diversity analysis and species identification in Lens using PCR generated markers. Euphytica 96:247–255CrossRefGoogle Scholar
  9. Ford R, Pang ECK, Taylor PWJ (1999) Genetics of resistance to ascochyta blight of lentil and the identification of closely linked markers. Theor Appl Genet 98:93–98CrossRefGoogle Scholar
  10. Fu D, Uauy C, Distelfeld A, Blechl A, Epstein L, Chen X, Sela H, Fahima T, Dubcovsky J (2009) A kinase-START gene confers temperature-dependent resistance to wheat stripe rust. Science 323:1357–1360PubMedCrossRefGoogle Scholar
  11. Galloway J, MacLeod WJ, Lindbeck KD (2004) Formation of Didymellalentis, the teleomorph of Ascochyta lentis, on lentil stubble in the field in Victoria and Western Australia. Australas Plant Pathol 33:449–450CrossRefGoogle Scholar
  12. Gossen BD, Morrall RAA (1983) Effect of ascochyta blight on seed yield and quality of lentil. Can J Plant Pathol 5:168–173CrossRefGoogle Scholar
  13. Haley CA, Andersson L (1997) Linkage mapping of quantitative trait loci in plants and animals. In: Dear PH (ed) Genome mapping—a practical approach. Oxford University Press, New York, pp 49–71Google Scholar
  14. Hamwieh A, Udupa SM, Choumane W, Sarker A, Dreyer F, Jung C, Baum M (2005) A genetic linkage map of Lens sp. based on microsatellite and AFLP markers and the localization of Fusarium vascular wilt resistance. Theor Appl Genet 110:669–677PubMedCrossRefGoogle Scholar
  15. Havey MH, Muehlbauer FJ (1989) Linkages between restriction fragment length, isozyme and morphological markers in lentil. Theor Appl Genet 77:395–401CrossRefGoogle Scholar
  16. Kosambi DD (1944) The estimation of map distances from recombination values. Ann Eugen 12:172–175CrossRefGoogle Scholar
  17. Liu S, Pumphrey MO, Gill BS, Trick HN, Zhang JX, Dolezel J, Chalhoub B, Anderson JA (2008) Toward positional cloning of Fhb1, a major QTL for Fusarium head blight resistance in wheat. Cereal Res Commun 36:195–201CrossRefGoogle Scholar
  18. Manly KF, Cudmore RH Jr, Meer JM (2001) Map Manager QTX, cross-platform software for genetic mapping. Genome 12:930–932Google Scholar
  19. Market Outlook Report (2010) Lentils: Situation and Outlook.
  20. Moore K, Knights T, MacLead B, Kimber R, Bretag T, Fulbohm M, Slatter J (2002) Pulse Australia national chickpea disease rating system for extension workers. GRDC—Research UpdatesGoogle Scholar
  21. Morrall RAA, Sheppard JW (1981) Ascochyta blight on lentils in western Canada: 1978–1980. Can Plant Dis Surv 61:7–12Google Scholar
  22. Nguyen TT, Taylor PWJ, Brouwer JB, Pang ECK, Ford R (2001) A novel source of resistance in lentil (Lens culinaris ssp. culinaris) to ascochyta blight caused by Ascochyta lentis. Aust Plant Pathol 30:211–215CrossRefGoogle Scholar
  23. Parlevliet JE (1993) What is durable resistance, a general outline. In: Jacobs T, Parlevliet JE (eds) Durability of disease resistance. Kluwer, Dordrecht, pp 23–29CrossRefGoogle Scholar
  24. Paterson AH (1996) Making genetic maps. In: Paterson AH (ed), Genome mapping in plants. Austin, Tex, Landes RG Company, San Diego, Calif, Acad Press, pp 23–39Google Scholar
  25. Pedersen EA, Morrall RAA (1994) Effects of cultivar, leaf wetness duration, temperature, and growth stage on infection and development of ascochyta blight on lentil. Phytopathology 84:1024–1030CrossRefGoogle Scholar
  26. Phan HT, Ellwood SR, Hane JK, Ford R, Materne M, Oliver RP (2007) Extensive microsynteny between Medicago truncatula and Lens culinaris ssp. culinaris. Theor Appl Genet 114:549–558PubMedCrossRefGoogle Scholar
  27. Rubeena, Ford R, Taylor PWJ (2003) Construction of an intraspecific linkage map of lentil (L. culinaris ssp. culinaris). Theor Appl Genet 107:910–916PubMedCrossRefGoogle Scholar
  28. Rubeena, Taylor PWJ, Ades PK, Ford R (2006) QTL mapping of resistance in lentil (Lens culinaris ssp. culinaris) to ascochyta blight (Ascochyta lentis). Plant Breed 125:506–512CrossRefGoogle Scholar
  29. Salvi S, Tuberosa R, Chiapparino E, Maccaferri M, Veillet S, van Beuningen L, Isaac P, Edwards K, Phillips RL (2002) Toward positional cloning of Vgt1, a QTL controlling the transition from the vegetative to the reproductive phase in maize. Plant Mol Biol 48:601–613PubMedCrossRefGoogle Scholar
  30. Scott KD, Eggler P, Seaton G, Rossetto M, Ablett EM, Lee LS, Henry RJ (2000) Analysis of SSRs derived from grape ESTs. Theor Appl Genet 100:723–726CrossRefGoogle Scholar
  31. Stracke S, Kistner C, Yoshida S, Mulder L, Sato S, Kaneko T, Tabata S, Sandal N, Stougaard J, Szczyglowski K, Parniske M (2002) A plant receptor-like kinase required for both bacterial and fungal symbiosis. Nature 417:959PubMedCrossRefGoogle Scholar
  32. Tanyolac B, Ozatay S, Kahraman A, Muehlbauer FJ (2010) Linkage mapping of lentil (Lens culinaris L.) genome using recombinant inbred lines revealed by AFLP, ISSR, RAPD and some morphologic markers. J Agric Biotech Sustain Dev 2:001–006Google Scholar
  33. Tullu A, Tar’an B, Warkentin T, Vandenberg A (2008) Construction of an intraspecific linkage map and QTL analysis for earliness and plant height in lentil. Crop Sci 48:2254–2264CrossRefGoogle Scholar
  34. Winter P, Benko-Iseppon AM, Hüttel B, Ratnaparkhe M, Tullu A, Sonnante G, Pfaff T, Tekeoglu M, Santra D, Sant VJ, Rajesh PN, Kahl G, Muehlbauer FJ (2000) A linkage map of the chickpea (Cicer arietinum L) genome based on recombinant inbred lines from a C. arietinum × C. reticulatum cross: localization of resistance gene for fusarium wilt races 4 and 5. Theor Appl Genet 101:1155–1163CrossRefGoogle Scholar
  35. Ye G, McNeil DL, Hill GD (2001) Inheritance of resistance to ascochyta blight in lentil. N Z Plant Prot 54:198–201Google Scholar
  36. Ye G, McNeil DL, Hill GD (2002) Breeding for resistance to lentil ascochyta blight. Plant Breed 121:185–191CrossRefGoogle Scholar
  37. Young ND, Udvardi M (2009) Translating Medicago truncatula genomics to crop legumes. Curr Opin Plant Biol 12:193–201PubMedCrossRefGoogle Scholar
  38. Zhang Q, Blaylock LA, Harrison MJ (2010) Two Medicago truncatula half-ABC transporters are essential for arbuscule development in arbuscular mycorrhizal symbiosis. Plant Cell 22:1483–1497PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • D. Gupta
    • 1
  • P. W. J. Taylor
    • 2
  • P. Inder
    • 2
  • H. T. T. Phan
    • 3
  • S. R. Ellwood
    • 4
  • P. N. Mathur
    • 5
  • A. Sarker
    • 6
  • R. Ford
    • 2
  1. 1.Department of Crop ImprovementCSK Himachal Pradesh Agricultural UniversityPalampurIndia
  2. 2.Biomarka/Centre for Plant Health, Melbourne School of Land and EnvironmentUniversity of MelbourneMelbourneAustralia
  3. 3.State Agricultural Biotechnology CentreMurdoch UniversityMurdochAustralia
  4. 4.Department of Environment and AgricultureCurtin UniversityPerthAustralia
  5. 5.Bioversity InternationalNew DelhiIndia
  6. 6.International Center for Agricultural Research in Dry Areas (ICARDA)New DelhiIndia

Personalised recommendations