Advertisement

Molecular Breeding

, Volume 30, Issue 1, pp 441–451 | Cite as

Virus-induced silencing of genes encoding LEA protein in Tibetan hulless barley (Hordeum vulgare ssp. vulgare) and their relationship to drought tolerance

  • Junjun Liang
  • Guangbing Deng
  • Hai LongEmail author
  • Zhifen Pan
  • Chunping Wang
  • Peng Cai
  • Deling Xu
  • Zha-Xi Nima
  • Maoqun YuEmail author
Article

Abstract

Expression of the late embryogenesis abundant (LEA) gene is usually associated with plant response to dehydration. In this study, a drought-tolerant genotype was screened from 48 accessions of Tibetan hulless barley (Hordeum vulgare ssp. vulgare). By using virus-induced gene silencing, the influence of two LEA genes (HVA1 and Dhn6) on drought tolerance of Tibetan hulless barley was investigated. Results of quantitative real-time PCR indicated that the relative expression levels of HVA1 and Dhn6 in silenced plants were significantly reduced compared with control plants. Both HVA1-silenced and Dhn6-silenced plants showed a consequently lower survival rate than control plants under drought stress. However, only HVA1-silenced plants exhibited a significantly higher water loss rate (WLR). These results suggested that HVA1 and Dhn6 might participate in adaptive responses to water deficit in different ways. Vegetative growth of HVA1-silenced plants was significantly retarded even under optimal growth conditions, and their biomass accumulation was also much lower than that of the controls. These results indicate that HVA1 might play a role in vegetative growth of Tibetan hulless barley.

Keywords

HVA1 Dhn6 Virus-induced gene silencing (VIGS) Barley stripe mosaic virus (BSMV) Water loss rate (WLR) 

Notes

Acknowledgments

We thank Chengdu Institute of Biology, Chinese Academy of Sciences for the Senior Research Fellowship award. Prof. Daowen Wang of Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, are kindly acknowledged for providing BSMV vectors. We sincerely acknowledge Dr. Bin Li for technical expertise and advice on BSMV inoculation, and Dr. Gang Qian for thoughtful discussion during the preparation of this manuscript. We also wish to thank the two anonymous reviewers for helpful comments that improved the manuscript. This work was supported by Major transgenic program (2008ZX08002-002), Ministry of Agriculture, P. R. China and Special Basic Research Funds of the Ministry of Science and Technology of China (No. 2006FY110700).

Supplementary material

11032_2011_9633_MOESM1_ESM.docx (604 kb)
Supplementary material 1 (DOC 604 kb)

References

  1. Abba S, Ghignone S, Bonfante P (2006) A dehydration-inducible gene in the truffle Tuber borchii identifies a novel group of dehydrins. BMC Genomics 7:39–53. doi: 10.1186/1471-2164-7-39 PubMedCrossRefGoogle Scholar
  2. Araus JL, Slafer GA, Reynolds MP, Royo C (2002) Plant breeding and drought in C-3 cereals: what should we breed for? Ann Bot 89:925–940. doi: 10.1093/aob/mcf049 PubMedCrossRefGoogle Scholar
  3. Babu RC, Zhang J, Blum A, Ho THD, Wu R, Nguyen HT (2004) HVA1, a LEA gene from barley confers dehydration tolerance in transgenic rice (Oryza sativa L.) via cell membrane protection. Plant Sci 166:855–862. doi: 10.1016/j.plantsci.2003.11.023 CrossRefGoogle Scholar
  4. Bahieldin A, Mahfouz HT, Eissa HF, Saleh OM, Ramadan AM, Ahmed IA, Dyer WE, El-Itriby HA, Madkour MA (2005) Field evaluation of transgenic wheat plants stably expressing the HVA1 gene for drought tolerance. Physiol Plant 123:421–427. doi: 10.1111/j.1399-3054.2005.00470.x CrossRefGoogle Scholar
  5. Baulcombe DC (1999) Fast forward genetics based on virus induced gene silencing. Curr Opin Plant Biol 2:109–113. doi: 10.1016/S1369-5266(99)80022-3 PubMedCrossRefGoogle Scholar
  6. Bies-Ethève N, Gaubier-Comella P, Debures A, Lasserre E, Jobet E, Raynal M, Cooke R, Delseny M (2008) Inventory, evolution and expression profiling diversity of the LEA (late embryogenesis abundant) protein gene family in Arabidopsis thaliana. Plant Mol Biol 67:107–124. doi: 10.1007/s11103-008-9304-x PubMedCrossRefGoogle Scholar
  7. Bray EA (1997) Plant responses to water deficit. Trends Plant Sci 2:48–54. doi: 10.1016/S1360-1385(97)82562-9 CrossRefGoogle Scholar
  8. Bray EA, Bailey-Serres J, Weretilnyk E (2000) Responses to abiotic stresses. In: Gruissem W, Buchannan B, Jones R (eds) Biochemistry and molecular biology of plants. American Society of Plant Physiologists, Rockville, pp 1158–1249Google Scholar
  9. Browne JA, Dolan KM, Tyson T, Goyal K, Tunnacliffe A, Burnell AM (2004) Dehydration-specific induction of hydrophilic protein genes in the anhydrobiotic nematode Aphelenchus avenae. Eukaryot Cell 3:966–975. doi: 10.1128/EC.3.4.966-975.2004 PubMedCrossRefGoogle Scholar
  10. Burch-Smith TM, Anderson JC, Martin GB, Dinesh-Kumar SP (2004) Applications and advantages of virus-induced gene silencing for gene function studies in plants. Plant J 39:734–746. doi: 10.1111/j.1365-313X.2004.02158.x PubMedCrossRefGoogle Scholar
  11. Campbell SA, Close TJ (1997) Dehydrins: genes, proteins, and associations with phenotypic traits. New Phytol 137:61–74. doi: 10.1046/j.1469-8137.1997.00831.x CrossRefGoogle Scholar
  12. Chandler PM, Robertson M (1994) Gene expression regulated by abscisic acid and its relation to stress tolerance. Annu Rev Plant Physiol Plant Mol Biol 45:113–141. doi: 10.1146/annurev.pp.45.060194.000553 CrossRefGoogle Scholar
  13. Chauhan H, Khurana P (2011) Use of doubled haploid technology for development of stable drought tolerant bread wheat (Triticum aestivum L.) transgenics. Plant Biotechnol J 9:408–417. doi: 10.1111/j.1467-7652.2010.00561.x PubMedCrossRefGoogle Scholar
  14. Clarke JM, McCaig TN (1982) Evaluation of techniques for screening for drought resistance in wheat. Crop Sci 22:503–506. doi: 10.2135/cropsci1982.0011183X002200030015x CrossRefGoogle Scholar
  15. Dalal M, Tayal D, Chinnusamy V, Bansal KC (2009) Abiotic stress and ABA-inducible group 4 LEA from Brassica napus plays a key role in salt and drought tolerance. J Biotechnol 139:137–145. doi: 10.1016/j.jbiotec.2008.09.014 PubMedCrossRefGoogle Scholar
  16. Demmig-Adams B, Adams WW III (1992) Photoprotection and other responses of plants to high light stress. Annu Rev Plant Physiol Plant Mol Biol 43:599–626. doi: 10.1146/annurev.pp.43.060192.003123 CrossRefGoogle Scholar
  17. Dombrowski JE, Martin RC (2009) Evaluation of reference genes for quantitative RT-PCR in Lolium temulentum under abiotic stress. Plant Sci 176:390–396. doi: 10.1016/j.plantsci.2008.12.005 CrossRefGoogle Scholar
  18. Dure L III, Chlan C (1981) Developmental biochemistry of cottonseed embryogenesis and germination. XII. Purification and properties of principal storage proteins. Plant Physiol 68:180–186. doi: 10.1104/pp.68.1.180 PubMedCrossRefGoogle Scholar
  19. Dure L III, Galau GA (1981) Developmental biochemistry of cottonseed embryogenesis and germination. XIII. Regulation of biosynthesis of principal storage proteins. Plant Physiol 68:187–194. doi: 10.1104/pp.68.1.187 PubMedCrossRefGoogle Scholar
  20. Dure L III, Greenway SC, Galau GA (1981) Developmental biochemistry of cottonseed embryogenesis and germination: changing messenger ribonucleic acid populations as shown by in vitro and in vivo protein synthesis. Biochemistry 20:4162–4168. doi: 10.1021/bi00517a033 PubMedCrossRefGoogle Scholar
  21. Dure L III, Crouch M, Harada J, Ho THD, Mundy J, Quatrano R, Thomas T, Sung ZR (1989) Common amino acid sequence domains among the LEA proteins of higher plants. Plant Mol Biol 12:475–486. doi: 10.1007/BF00036962 CrossRefGoogle Scholar
  22. Fu D, Huang B, Xiao Y, Muthukrishnan S, Liang GH (2007) Overexpression of barley HVA1 gene in creeping bentgrass for improving drought tolerance. Plant Cell Rep 26:467–477. doi: 10.1007/s00299-006-0258-7 PubMedCrossRefGoogle Scholar
  23. Garay-Arroyo A, Colmenero-Flores JM, Garciarrubio A, Covarrubias AA (2000) Highly hydrophilic proteins in prokaryotes and eukaryotes are common during conditions of water deficit. J Biol Chem 275:5668–5674. doi: 10.1074/jbc.275.8.5668 PubMedCrossRefGoogle Scholar
  24. Godge MR, Purkayastha A, Dasgupta I, Kumar PP (2008) Virus-induced gene silencing for functional analysis of selected genes. Plant Cell Rep 27:209–219. doi: 10.1007/s00299-007-0460-2 PubMedCrossRefGoogle Scholar
  25. Guo P, Baum M, Grando S, Ceccarelli S, Bai G, Li R, von Korff M, Varshney RK, Graner A, Valkoun J (2009) Differentially expressed genes between drought-tolerant and drought-sensitive barley genotypes in response to drought stress during the reproductive stage. J Exp Bot 60(12):3531–3544. doi: 10.1093/jxb/erp194 PubMedCrossRefGoogle Scholar
  26. Hartl M, Merker H, Schmidt DD, Baldwin IT (2008) Optimized virus-induced gene silencing in Solanum nigrum reveals the defensive function of leucine aminopeptidase against herbivores and the shortcomings of empty vector controls. New Phytol 179:356–365. doi: 10.1111/j.1469-8137.2008.02479.x PubMedCrossRefGoogle Scholar
  27. Holzberg S, Brosio P, Gross C, Pogue GP (2002) Barley stripe mosaic virus-induced gene silencing in a monocot plant. Plant J 30:315–327. doi: 10.1046/j.1365-313X.2002.01291.x PubMedCrossRefGoogle Scholar
  28. Hundertmark M, Hincha DK (2008) LEA (Late Embryogenesis Abundant) proteins and their encoding genes in Arabidopsis thaliana. BMC Genomics 9:118–139. doi: 10.1186/1471-2164-9-118 PubMedCrossRefGoogle Scholar
  29. Ingram J, Bartels D (1996) The molecular basis of dehydration tolerance in plants. Annu Rev Plant Physiol Plant Mol Biol 47:377–403. doi: 10.1146/annurev.arplant.47.1.377 PubMedCrossRefGoogle Scholar
  30. Kumagai MH, Donson J, Della-Cioppa G, Harvey D, Hanley K, Grill LK (1995) Cytoplasmic inhibition of carotenoid biosynthesis with virus-derived RNA. Proc Natl Acad Sci USA 92:1679–1683. doi: 10.1073/pnas.92.5.1679 PubMedCrossRefGoogle Scholar
  31. Lal S, Gulyani V, Khurana P (2008) Overexpression of HVA1 gene from barley generates tolerance to salinity and water stress in transgenic mulberry (Morus indica). Transgenic Res 17:651–663. doi: 10.1007/s11248-007-9145-4 PubMedCrossRefGoogle Scholar
  32. Liu Y, Schiff M, Dinesh-Kumar SP (2002) Virus-induced gene silencing in tomato. Plant J 31:777–786. doi: 10.1046/j.1365-313X.2002.01394.x PubMedCrossRefGoogle Scholar
  33. Long XY, Wang JR, Ouellet T, Rocheleau H, Wei YM, Pu ZE, Jiang QT, Lan XJ, Zheng YL (2010) Genome-wide identification and evaluation of novel internal control genes for Q-PCR based transcript normalization in wheat. Plant Mol Biol 74:307–311. doi: 10.1007/s11103-010-9666-8 PubMedCrossRefGoogle Scholar
  34. Mtwisha L, Brandt W, McCready S, Lindsey GG (1998) HSP 12 is a LEA-like protein in Saccharomyces cerevisiae. Plant Mol Biol 37:513–521. doi: 10.1023/A:1005904219201 PubMedCrossRefGoogle Scholar
  35. NDong C, Danyluk J, Wilson KE, Pocock T, Huner NP, Sarhan F (2002) Cold-regulated cereal chloroplast late embryogenesis abundant-like proteins: molecular characterization and functional analyses. Plant Physiol 129:1368–1381. doi: 10.1104/pp.001925 PubMedCrossRefGoogle Scholar
  36. Nicot N, Hausman JF, Hoffmann L, Evers D (2005) Housekeeping gene selection for real-time RT-PCR normalization in potato during biotic and abiotic stress. J Exp Bot 56(421):2907–2914. doi: 10.1093/jxb/eri285 PubMedCrossRefGoogle Scholar
  37. Olvera-Carrillo Y, Campos F, Reyes JL, Garciarrubio A, Covarrubias AA (2010) Functional analysis of the group 4 late embryogenesis abundant proteins reveals their relevance in the adaptive response during water deficit in Arabidopsis. Plant Physiol 154:373–390. doi: 10.1104/pp.110.158964 PubMedCrossRefGoogle Scholar
  38. Puhakainen T, Hess MW, Makela P, Svensson J, Heino P, Palva ET (2004) Overexpression of multiple dehydrin genes enhances tolerance to freezing stress in Arabidopsis. Plant Mol Biol 54:743–753. doi: 10.1023/B:PLAN.0000040903.66496.a4 PubMedCrossRefGoogle Scholar
  39. Qian G (2007) Genotypic variability in sequences and expression of LEA2/LEA3 genes in Tibetan Hulless Barley, Hordeum vulgare ssp. Vulgare, associated with resistance to water deficit. Dissertation, Chengdu Institute of Biology, the Chinese Academy of SciencesGoogle Scholar
  40. Qian G, Han ZX, Zhao T, Deng GB, Pan ZF, Yu MQ (2007) Genotypic variability in sequence and expression of HVA1 gene in Tibetan hulless barley, Hordeum vulgare ssp. vulgare, associated with resistance to water deficit. Aust J Agric Res 58:425–431. doi: 10.1071/AR06300 CrossRefGoogle Scholar
  41. Ratcliff F, Harrison BD, Baulcombe DC (1997) A similarity between viral defense and gene silencing in plants. Science 276:1558–1560. doi: 10.1126/science.276.5318.1558 PubMedCrossRefGoogle Scholar
  42. Ristic Z, Jenks MA (2002) Leaf cuticle and water loss in maize lines differing in dehydration avoidance. J Plant Physiol 159:645–651. doi: 10.1078/0176-1617-0743 CrossRefGoogle Scholar
  43. Robertson M, Chandler PM (1994) A dehydrin cognate protein from pea (Pisum sativum L.) with an atypical pattern of expression. Plant Mol Biol 26:805–816. doi: 10.1007/BF00028850 PubMedCrossRefGoogle Scholar
  44. Rohila JS, Jain RK, Wu R (2002) Genetic improvement of Basmati rice for salt and drought tolerance by regulated expression of a barley Hva1 cDNA. Plant Sci 163:525–532. doi: 10.1016/S0168-9452(02)00155-3 CrossRefGoogle Scholar
  45. Seckler D, Amarasinghe U, Molden D, de Silva R, Barker R (1998) World water demand and supply, 1990 to 2025: scenarios and issues. Colombo, Sri Lanka: International Water Management Institute (IIMI); IWMI. vi, 40p. (IIMI Research Report 19/IWMI Research Report 19). doi: 10.3910/2009.019
  46. Seckler D, Barker R, Amarasinghe UA (1999) Water scarcity in the twenty-first century. Int J Water Resour Dev 15:29–42. doi: 10.1080/07900629948916 CrossRefGoogle Scholar
  47. Sivamani E, Bahieldin A, Wraith JM, Al-Niemi T, Dyer WE, Ho THD, Qu R (2000) Improved biomass productivity and water use efficiency under water deficit conditions in transgenic wheat constitutively expressing the barley HVA1 gene. Plant Sci 155:1–9. doi: 10.1016/S0168-9452(99)00247-2 PubMedCrossRefGoogle Scholar
  48. Solomon A, Salomon R, Paperna I, Glazer I (2000) Desiccation stress of entomopathogenic nematodes induces the accumulation of a novel heat-stable protein. Parasitology 121:409–416. doi: 10.1017/S0031182099006563 PubMedCrossRefGoogle Scholar
  49. Stacy RAP, Aalen RB (1998) Identification of sequence homology between the internal hydrophilic repeated motifs of group 1 late-embryogenesis-abundant proteins in plants and hydrophilic repeats of the general stress protein GsiB of Bacillus subtilis. Planta 206:476–478. doi: 10.1007/s004250050424 PubMedCrossRefGoogle Scholar
  50. Suppunova T, Krugman T, Fahima T, Chen G, Shams I, Korol A, Nevo E (2004) Differential expression of dehydrin genes in wild barley, Hordeum spontaneum, associated with resistance to water deficit. Plant Cell Environ 27:1297–1308. doi: 10.1111/j.1365-3040.2004.01237.x CrossRefGoogle Scholar
  51. Thomashow MF (1998) Role of cold-responsive genes in plant freezing tolerance. Plant Physiol 118:1–8. doi: 10.1104/pp.118.1.1 PubMedCrossRefGoogle Scholar
  52. Wan H, Zhao Z, Qian C, Sui Y, Malik AA, Chen J (2010) Selection of appropriate reference genes for gene expression studies by quantitative real-time polymerase chain reaction in cucumber. Anal Biochem 399:257–261. doi: 10.1016/j.ab.2009.12.008 PubMedCrossRefGoogle Scholar
  53. Wu CJ, Jia LL, Goggin F (2011) The reliability of virus-induced gene silencing experiments using tobacco rattle virus in tomato is influenced by the size of the vector control. Mol Plant Pathol 12(3):299–305. doi: 10.1111/J.1364-3703.2010.00669.X PubMedCrossRefGoogle Scholar
  54. Xiao B, Huang Y, Tang N, Xiong L (2007) Over-expression of a LEA gene in rice improves drought resistance under the field conditions. Theor Appl Genet 115:35–46. doi: 10.1007/s00122-007-0538-9 PubMedCrossRefGoogle Scholar
  55. Xu D, Duan X, Wang B, Hong B, Ho T-HD, Wu R (1996) Expression of a late embryogenesis abundant protein gene, HVA1, from barley confers tolerance to water deficit and salt stress in transgenic rice. Plant Physiol 110:249–257. doi: 10.1104/pp.110.1.249 PubMedGoogle Scholar
  56. Yang GF, Peng HX, Li CA, Yin HF (2001) Analysis of hydrothermal factors and presentation of ecological recovery measures in Northwest China. Northwest Geol 34:9–15. doi: cnki:SCN:61-1174.0.2001-04-00 Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Junjun Liang
    • 1
    • 2
  • Guangbing Deng
    • 1
  • Hai Long
    • 1
    Email author
  • Zhifen Pan
    • 1
  • Chunping Wang
    • 1
  • Peng Cai
    • 3
    • 4
  • Deling Xu
    • 1
    • 2
  • Zha-Xi Nima
    • 5
    • 6
  • Maoqun Yu
    • 1
    Email author
  1. 1.Chengdu Institute of BiologyChinese Academy of SciencesChengduPeople’s Republic of China
  2. 2.Graduate University of Chinese Academy of SciencesBeijingPeople’s Republic of China
  3. 3.Triticeae Research Institute of Sichuan Agricultural UniversityYaanPeople’s Republic of China
  4. 4.College of Life ScienceChina West Normal UniversityNanchongPeople’s Republic of China
  5. 5.Tibet Academy of Agriculture and Animal SciencesLhasaPeople’s Republic of China
  6. 6.Barley Improvement and Yak Breeding Key Lab of Tibet Autonomous RegionLhasaPeople’s Republic of China

Personalised recommendations