Molecular Breeding

, Volume 30, Issue 1, pp 79–92 | Cite as

Relationships between grain protein content and grain yield components through quantitative trait locus analyses in a recombinant inbred line population derived from two elite durum wheat cultivars

  • A. BlancoEmail author
  • G. Mangini
  • A. Giancaspro
  • S. Giove
  • P. Colasuonno
  • R. Simeone
  • A. Signorile
  • P. De Vita
  • A. M. Mastrangelo
  • L. Cattivelli
  • A. Gadaleta


Grain protein content (GPC) in durum wheat (Triticum turgidum var. durum) is negatively correlated with grain yield. To evaluate possible genetic interrelationships between GPC and grain yield per spike, thousand-kernel weight and kernel number per spike, quantitative trait loci (QTL) for GPC were mapped using GPC-adjusted data in a covariance analysis on yield components. Phenotypic data were evaluated in a segregating population of 120 recombinant inbred lines derived from crossing the elite cultivars Svevo and Ciccio. The material was tested at five environments in southern Italy. QTL were determined by composite interval mapping based on the Svevo × Ciccio linkage map described in Gadaleta et al. (2009) and integrated with DArT markers. The close relationship between GPC and yield components was reflected in the negative correlation between the traits and in the reduction of variance when GPC values were adjusted to yield components. Ten independent genomic regions involved in the expression of GPC were detected, six of which were associated with QTL for one or more grain yield components. QTL alleles with increased GPC effects were associated with QTL alleles with decreased effects on one or more yield component traits, or vice versa (i.e. the allelic effects were in opposite direction). Four QTL for GPC showed always significant effects, and these QTL should represent genes that influence GPC independently from variation in the yield components. Such genes are of special interest in wheat breeding since they would allow an increase in GPC without a concomitant decrease in grain yield.


Wheat Grain protein content Yield components Molecular markers QTL mapping 



The research project was supported by grants from Ministero dell’Istruzione, dell’Università e della Ricerca, projects ‘FISR’ and ‘AGROGEN’.

Supplementary material

11032_2011_9600_MOESM1_ESM.doc (28 kb)
Supplementary material 1 (DOC 28 kb)
11032_2011_9600_MOESM2_ESM.doc (206 kb)
Supplementary material 2 (DOC 205 kb)
11032_2011_9600_MOESM3_ESM.doc (30 kb)
Supplementary material 3 (DOC 29 kb)


  1. Bathia CR, Rabson R (1987) Relationship of grain yield and nutritional quality. Nutritional quality of cereal grains: genetic and agronomic improvement. Agron Monogr 28:11–43Google Scholar
  2. Blanco A, Pasqualone A, Troccoli A, Di Fonzo N, Simeone R (2002) Detection of grain protein content QTLs across environments in tetraploid wheats. Plant Mol Biol 48:615–623PubMedCrossRefGoogle Scholar
  3. Blanco A, Simeone R, Cenci A, Gadaleta A, Tanzarella OA, Porceddu E, Salvi S, Tuberosa R, Figliuolo G, Spagnoletti P, Roder M, Korzun V (2004) Extention of the “Messapia × dicoccoides” linkage map of Triticum turgidum (L) Thell. Cell Mol Biol Lett 9(3):529–541PubMedGoogle Scholar
  4. Blanco A, Simeone R, Gadaleta A (2006) Detection of QTL for grain protein content in durum wheat. Theor Appl Genet 112:1195–1204PubMedCrossRefGoogle Scholar
  5. Börner A, Schumann E, Furste A, Coster H, Leithold B, Röder MS, Weber WE (2002) Mapping of quantitative trait loci determining agronomic important characters in hexaploid wheat (Triticum aestivum L.). Theor Appl Genet 105:921–936PubMedCrossRefGoogle Scholar
  6. Brevis JC, Dubcovsky J (2010) Effects of the chromosome region including the grain protein content locus Gpc-B1 on wheat grain and protein yield. Crop Sci 50:93–104CrossRefGoogle Scholar
  7. Campbell KG, Finney PL, Bergman CJ, Gualberto DG, Anderson JA, Giroux MJ, Siritunga D, Zhu J, Gendre F, Roue C, Verel A, Sorrells ME (2001) Quantitative trait loci associated with milling and baking quality in a soft × hard wheat cross. Crop Sci 41:1275–1285CrossRefGoogle Scholar
  8. Chee PW, Elias EM, Anderson JA, Kianian SF (2001) Evaluation of a high grain protein QTL from Triticum turgidum L. var. dicoccoides in an adapted durum wheat background. Crop Sci 41:295–301CrossRefGoogle Scholar
  9. Clarke JM, McCaig TN, DePauw RM, Knox RE, Clarke FR, Fernandez MR, Ames NP (2005) Strongfield durum wheat. Can J Plant Sci 85:651–654CrossRefGoogle Scholar
  10. De Ambrogio E, Ranieri R (2002) Durum wheat breeding aiming at yield stability and high pasta-making quality. In: Marè C, Faccioli P, Stanca AM (eds) Proceedings of EUCARPIA cereal section meeting, 21–25 Nov 2002, Salsomaggiore, Italy. I.S.C. Fiorenzuola, pp 332–335Google Scholar
  11. Dholakia BB, Ammiraju JSS, Sandra DK, Singh H, Katti MV, Lagu MD, Tamhankar SA, Rao VS, Gupta VS, Dhaliwal HS, Ranjekar PK (2001) Molecular marker analysis of protein content using PCR-based marker in wheat. Biochem Genet 39:325–338PubMedCrossRefGoogle Scholar
  12. Feil B (1997) The inverse yield-protein relationship in cereals: possibilities and limitations for genetically improving the grain protein yield. Trends Agron 1:103–119Google Scholar
  13. Gadaleta A, Giancaspro A, Giove SL, Zacheo S, Mangini G, Simeone R, Signorile A, Blanco A (2009) Genetic and physical mapping of new EST–derived SSRs on the A and B genome chromosomes of wheat. Theor Appl Genet 118:1015–1025PubMedCrossRefGoogle Scholar
  14. Gonzalez-Hernandez JL, Elias EM, Kianian SF (2004) Mapping genes for grain protein concentration and grain yield on chromosome 5B of Triticum turgidum (L.) var. dicoccoides. Euphytica 139:217–225CrossRefGoogle Scholar
  15. Grant CA, Gauer LE, Gehl DT, Bailey LD (1991) Protein and nitrogen utilization by barley cultivars response to nitrogen fertilizer under varying moisture conditions. Can J Plant Sci 71:997–1009CrossRefGoogle Scholar
  16. Groos C, Robert N, Bervas E, Charmet G (2003) Genetic analysis of grain protein content, grain yield and thousand–kernel weight in bread wheat. Theor Appl Genet 106:1032–1040PubMedGoogle Scholar
  17. Huang XQ, Cöster H, Ganal MW, Röder MS (2003) Advanced backcross QTL analysis for the identification of quantitative trait loci alleles from wild relatives of wheat (Triticum aestivum L.). Theor Appl Genet 106:1379–1389PubMedGoogle Scholar
  18. Huang XQ, Kempf H, Ganal MW, Röder MS (2004) Advanced backcross QTL analysis in progenies derived from a cross between a German elite winter wheat variety and a synthetic wheat (Triticum aestivum L.). Theor Appl Genet 109:933–943PubMedCrossRefGoogle Scholar
  19. Huang XQ, Cloutier S, Lycar L, Radovanovic N, Humphreys DG (2006) Molecular detection of QTLs for agronomic and quality traits in a doubled haploid population derived from two Canadian wheats (Triticum aestivum L.). Theor Appl Genet 113:753–766PubMedCrossRefGoogle Scholar
  20. Islam AKMR, Shepherd KW (1991) Alien genetic variation in wheat improvement. In: Gupta PK, Tsuchiya T (eds) Chromosome engineering in plants: genetics, breeding, evolution. Elsevier, Amsterdam, pp 291–312Google Scholar
  21. Joehanes R, Nelson JC (2008) QGene 4.0, an extensible Java QTL-analysis platform. Bioinformatics 24:2788–2789PubMedCrossRefGoogle Scholar
  22. Joppa LR, Cantrell RG (1990) Chromosomal location of genes for grain protein content of wild tetraploid wheat. Crop Sci 30:1059–1064CrossRefGoogle Scholar
  23. Joppa LR, Du C, Hart GE, Hareland GA (1997) Mapping genes for grain protein in tetraploid wheat (Triticum turgidum L.) using a population of recombinant inbred chromosome lines. Crop Sci 37:1586–1589CrossRefGoogle Scholar
  24. Kearsey MJ, Pooni HS (1996) The genetical analysis of quantitative traits. Chapman and Hall, LondonGoogle Scholar
  25. Khan IA, Procunier JD, Humphreys DG, Tranquilli G, Schlatter AR, Marcucci-Poltri S, Frohberg R, Dubcovsky J (2000) Development of PCR–based markers for a high grain protein content gene from Triticum turgidum ssp. dicoccoides transferred to bread wheat. Crop Sci 40:518–524CrossRefGoogle Scholar
  26. Konzak CF (1977) Genetic control of the content, amino acid composition and processing properties of proteins in wheat. Adv Genet 19:407–582PubMedCrossRefGoogle Scholar
  27. Kramer TH (1979) Environmental and genetic variation for protein content in winter wheat (Triticum aestivum). Euphytica 28:209–218CrossRefGoogle Scholar
  28. Kuchel H, Williams KJ, Langridge P, Eagles HA, Jefferies SP (2007) Genetic dissection of grain yield in bread wheat: I. QTL analysis. Theor Appl Genet 115:1029–1041PubMedCrossRefGoogle Scholar
  29. Kumar N, Kulwal PL, Balyan HS, Gupta PK (2007) QTL mapping for yield and yield contributing traits in two mapping populations of bread wheat. Mol Breed 19:163–177CrossRefGoogle Scholar
  30. Landeer S, Botstein D (1989) Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121:185–199Google Scholar
  31. Levy AA, Feldman M (1989) Location of genes for high grain protein percentage and other quantitative traits in wild wheat, T. turgidum var. dicoccoides. Euphytica 41:113–122CrossRefGoogle Scholar
  32. Li H, Ye G, Wang J (2007) A modified algorithm for the improvement of composite interval mapping. Genetics 175:361–374PubMedCrossRefGoogle Scholar
  33. Maccaferri M, Sanguineti MC, Corneti S, Araus Ortega JL, Ben Salem M, Bort J, DeAmbrogio E, Garcia del Moral LF, Demontis A, El-Ahmed A, Maalouf F, Machlab H, Martos V, Moragues M, Motawaj J, Nachit M, Nserallah N, Ouabbou H, Royo C, Slama A, Tuberosa R (2008) Quantitative trait loci for grain yield and adaptation of durum wheat (Triticum durum Desf.) across a wide range of water availability. Genetics 178:489–511PubMedCrossRefGoogle Scholar
  34. Mann G, Diffey S, Cullis B, Azanza F, Martin D, Kelly A, McIntyre L, Schmidt A, Ma W, Nath Z, Kutty I, Leyne PE, Rampling L, Quail KJ, Morell MK (2009) Genetic control of wheat quality: interactions between chromosomal regions determining protein content and composition, dough rheology, and sponge and dough baking properties. Theor Appl Genet 118:1519–1537PubMedCrossRefGoogle Scholar
  35. Marza F, Bai GH, Carver BF, Zhou WC (2005) Quantitative trait loci for yield and related traits in the wheat population Ning7840 × Clark. Theor Appl Genet 21:1–11Google Scholar
  36. McCartney CA, Somers DJ, Humphreys DG, Lukow O, Ames N, Noll J, Cloutier S, McCallum BD (2005) Mapping quantitative trait loci controlling agronomic traits in the spring wheat cross RL4452 × ‘AC Domain’. Genome 48:870–883PubMedCrossRefGoogle Scholar
  37. McIntyre CL, Mathews KL, Rattey A, Chapman SC, Drenth J, Ghaderi M, Reynolds M, Shorter R (2010) Molecular detection of genomic regions associated with grain yield and yield-related components in an elite bread wheat cross evaluated under irrigated and rainfed conditions. Theor Appl Genet 120:527–541PubMedCrossRefGoogle Scholar
  38. McNeal FH, Berg MA, McGuire CF, Stewart VR, Baldridge DE (1972) Grain and plant nitrogen relationships in eight spring wheat crosses, Triticum aestivum L. Crop Sci 12:599–602CrossRefGoogle Scholar
  39. Mesfin A, Frohberg RC, Anderson JA (1999) RFLP markers associated with high grain protein from Triticum turgidum L. var. dicoccoides introgressed into hard red spring wheat. Crop Sci 39:508–513CrossRefGoogle Scholar
  40. Nelson JC, Andreescu C, Breseghello F, Finney PL, Gualberto DG, Bergman CJ, Pena RJ, Perretant MR, Leroy P, Qualset CO, Sorrells ME (2006) Quantitative trait locus analysis of wheat quality traits. Euphytica 149:145–159CrossRefGoogle Scholar
  41. Olmos S, Diestelfeld A, Chicaiza O, Schatter AR, Fahima T, Echenique V, Dubcovsky J (2003) Precise mapping of a locus affecting grain protein content in durum wheat. Theor Appl Genet 107:1243–1251PubMedCrossRefGoogle Scholar
  42. Oury FX, Godin C (2007) Yield and grain protein concentration in bread wheat: how to use the negative relationship between the two characters to identify favourable genotypes? Euphytica 157:45–57CrossRefGoogle Scholar
  43. Oury FX, Berard P, Brancourt-Hulmel M, Depatureaux C, Doussignault G, Galic N, Giraud A, Heumez E, Lecompte C, Pluchard P, Rolland B, Rousset M, Trottet M (2003) Yield and grain protein concentration in bread wheat: a review and a study of multi-annual data from a French breeding program. J Genet Breed 57:59–68Google Scholar
  44. Perretant MR, Cadalen T, Charmet G, Sourdille P, Nicolas P, Boeuf C, Tixier MH, Branlard G, Bernard S, Bernard M (2000) QTL analysis of bread-making quality in wheat using a doubled haploid population. Theor Appl Genet 100:1167–1175CrossRefGoogle Scholar
  45. Prasad M, Varshney RK, Kumar A, Balyan HS, Sharma PC, Edwards KJ, Singh H, Dhaliwal HS, Roy JK, Gupta PK (1999) A microsatellite marker associated with a QTL for grain protein content on chromosome 2DL of bread wheat. Theor Appl Genet 99:341–345CrossRefGoogle Scholar
  46. Prasad M, Kumar N, Kulwal PL, Roder MS, Balyan HS, Dhaliwal HS, Roy JK, Gupta PK (2003) QTL analysis for grain protein content using SSR markers and validation studies using NILs in bread wheat. Theor Appl Genet 106:659–667PubMedGoogle Scholar
  47. Quarrie SA, Steed A, Calestani C, Semikhodskii A, Lebreton C, Chinoy C, Steele N, Pljevljakusic D, Waterman E, Weyen J, Schondelmaier J, Habash DZ, Farmer P, Saker L, Clarkson DT, Abugalieva A, Yessimbekova M, Turuspekov Y, Abugalieva S, Tuberosa R, Sanguineti MC, Hollington PA, Aragues R, Royo A, Dodig D (2005) A high-density genetic map of hexaploid wheat (Triticum aestivum L.) from the cross Chinese Spring × SQ1 and its use to compare QTLs for grain yield across a range of environments. Theor Appl Genet 110:865–880PubMedCrossRefGoogle Scholar
  48. Raman R, Allen H, Raman H, Diffey S, Martin P, McKelvie K (2009) Localisation of quantitative trait loci for quality attributes in a doubled haploid population of wheat (Triticum aestivum L.). Genome 52:701–715PubMedCrossRefGoogle Scholar
  49. Sears RG (1998) Improving grain protein concentration and grain yield in USA hard winter wheat. In: Fowler DB, Geddes WE, Johnston AM, Preston KR (eds) Wheat protein production and marketing. Printcrafters Inc., WinnipegGoogle Scholar
  50. Simmonds NW (1995) The relation between yield and protein in cereal grain. J Sci Food Agric 67:309–315CrossRefGoogle Scholar
  51. Singh H, Prasad M, Varshney RK, Roy JK, Balyan HS, Dhaliwal HS, Gupta PK (2001) STMS markers for grain protein content and their validation using near-isogenic lines in bread wheat. Plant Breed 120:273–278CrossRefGoogle Scholar
  52. Snape JW, Hyne V, Aitken K (1995) Targeting genes in wheat using marker–mediated approaches. In: ZS Li, Xin ZY (eds) Proceeding 8th international wheat genetics symposium, Beijing, 20–25 July 1993. China Agric Scientech Press, Beijing, China, pp 749–759Google Scholar
  53. Somers DJ, Peter I, Edwards K (2004) A high-density microsatellite consensus map for bread wheat (Triticum aestivum L.). Theor Appl Genet 109:1105–1114PubMedCrossRefGoogle Scholar
  54. Sourdille P, Perretant MR, Charmet G, Leroy P, Gautier MF, Joudrier P, Nelson JC, Sorrells ME, Bernard M (1996) Linkage between RFLP markers and gene affecting kernel hardness in wheat. Theor Appl Genet 93:580–586CrossRefGoogle Scholar
  55. Stein IS, Sears RG, Hoseney RC, Cox TS, Gill BS (1992) Chromosomal location of genes influencing grain protein concentration and mixogram properties in Plainsman V winter wheat. Crop Sci 32:573–580CrossRefGoogle Scholar
  56. Sun Y, Wang J, Crouch JH, Xu Y (2010) Efficiency of selective genotyping for genetic analysis of complex traits and potential applications in crop improvement. Mol Breed 26:493–511CrossRefGoogle Scholar
  57. Suprayogi Y, Pozniak CJ, Clarke FR, Clarke JM, Knox RE, Singh AK (2009) Identification and validation of quantitative trait loci for grain protein concentration in adapted Canadian durum wheat populations. Theor Appl Genet 119(3):437–448PubMedGoogle Scholar
  58. Terman GL (1979) Yields and protein content of wheat grain, as affected by cultivars, N, and environmental growth factors. Agron J 71:437–440CrossRefGoogle Scholar
  59. Turner AS, Bradburne RP, Fish L, Snape JW (2004) New quantitative trait loci influencing grain texture and protein content in bread wheat. J Cereal Sci 40:51–60CrossRefGoogle Scholar
  60. Uauy C, Brevis JC, Dubcovsky J (2006) The high grain protein content gene Gpc-B1 accelerates senescence and has pleiotropic effects on protein content in wheat. J Exp Bot 57:2785–2794PubMedCrossRefGoogle Scholar
  61. Van Ooijen JW, Voorrips RE (2001) JoinMap® 3.0. PRI, WageningenGoogle Scholar
  62. Voorrips RE (2002) MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered 93:77–78PubMedCrossRefGoogle Scholar
  63. Wenzl P, Carling J, Kudrna D, Jaccoud D, Huttner E, Kleinhofs A, Kilian A (2004) Diversity arrays technology (DArT) for whole-genome profiling of barley. Proc Natl Acad Sci USA 101:9915–9920PubMedCrossRefGoogle Scholar
  64. Zanetti S, Winzeler M, Feulillet C, Keller B, Messmer M (2001) Genetic analysis of bread-making quality in wheat and spelt. Plant Breed 120:13–19CrossRefGoogle Scholar
  65. Zhang W, Chao S, Manthey F, Chicaiza O, Brevis JC, Echenique V, Dubcovsky J (2008) QTL analysis of pasta quality using a composite microsatellite and SNP map of durum wheat. Theor Appl Genet 117:1361–1377PubMedCrossRefGoogle Scholar
  66. Zheng BS, Le Gouis J, Leflon M, Rong WY, Laperche A, Brancourt-Hulmel M (2010) Using probe genotypes to dissect QTL × environment interactions for grain yield components in winter wheat. Theor Appl Genet 121:1501–1517PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • A. Blanco
    • 1
    Email author
  • G. Mangini
    • 1
  • A. Giancaspro
    • 1
  • S. Giove
    • 1
  • P. Colasuonno
    • 1
  • R. Simeone
    • 1
  • A. Signorile
    • 1
  • P. De Vita
    • 2
  • A. M. Mastrangelo
    • 2
  • L. Cattivelli
    • 2
    • 3
  • A. Gadaleta
    • 1
  1. 1.Department of Environmental and Agro-Forestry Biology and Chemistry, Sect. Genetic and Plant BreedingUniversity of BariBariItaly
  2. 2.CRA—Cereal Research CentreFoggiaItaly
  3. 3.CRA—Genomic Research CentreFiorenzuola d’ArdaItaly

Personalised recommendations