Molecular Breeding

, Volume 29, Issue 3, pp 699–715 | Cite as

Exploiting expressed sequence tag databases for mapping markers associated with fruit development and fruit quality in apple

  • Valentina Cova
  • Davide Perini
  • Valeria Soglio
  • Matteo Komjanc
  • Eric van de Weg
  • Cesare Gessler
  • Luca Gianfranceschi
Article

Abstract

Apple (Malus × domestica Borkh.) is one of the most important fruit trees grown in Europe and around the world for human consumption, and therefore plant breeders aim at producing new apple varieties with high fruit quality. The availability of molecular markers suitable for marker-assisted selection could greatly increase the efficiency and power of breeding. The recent release of the cv. Golden Delicious genome sequence contributed to an exponential increase in the number of Malus sequences publicly available, while the successful achievement of two apple expressed sequence tag (EST) projects permitted the development of molecular markers from coding sequences. Here we present the setting up and mapping of new EST-based markers specific for fruit development and fruit quality traits. Since a large proportion of the ESTs used in our work were transcriptionally characterized and some of them co-localize within quantitative trait locus regions controlling fruit quality traits, the data reported will be effective in the identification of candidate genes. Due to the high level of polymorphism present in the Malus genome, 70% of the entire set of ESTs analyzed were polymorphic and 80% of them were successfully located using the conventional map-based approach. Fifty new EST-based markers were placed on the apple reference genetic map Fiesta × Discovery, thus enhancing the saturation of some regions, and 17 on Prima × Fiesta. Finally, another 17 markers were located on the Golden Delicious genome sequence using an in-silico approach.

Keywords

Candidate genes ESTs Fruit development Functional molecular markers Malus × domestica Mapping 

Supplementary material

11032_2011_9584_MOESM1_ESM.doc (178 kb)
Supplementary material 1 (DOC 179 kb)

References

  1. Agarwal M, Shrivastava N, Padh H (2008) Advances in molecular marker techniques and their applications in plant sciences. Plant Cell Rep 27:617–631PubMedCrossRefGoogle Scholar
  2. Alba R, Payton P, Fei Z, McQuinn R, Debbie P, Martin GB, Tanksley SD, Giovannoni JJ (2005) Transcriptome and selected metabolite analyses reveal multiple points of ethylene control during tomato fruit development. Plant Cell 17:2954–2965PubMedCrossRefGoogle Scholar
  3. Benson G (1999) Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res 27:573–580PubMedCrossRefGoogle Scholar
  4. Bermúdez L, Urias U, Milstein D, Kamenetzky L, Asis R, Fernie AR, Sluys MAV, Carrari F, Rossi M (2008) A candidate gene survey of quantitative trait loci affecting chemical composition in tomato fruit. J Exp Bot 59:2875–2890PubMedCrossRefGoogle Scholar
  5. Broekaert WF, Delaure SL, De Bolle MF, Cammue BP (2006) The role of ethylene in host-pathogen interactions. Annu Rev Phytopathol 44:393–416PubMedCrossRefGoogle Scholar
  6. Brummell DA, Harpster MH (2001) Cell wall metabolism in fruit softening and quality and its manipulation in transgenic plants. Plant Mol Biol 47:311–339PubMedCrossRefGoogle Scholar
  7. Calenge F, Durel C (2006) Both stable and unstable QTLs for resistance to powdery mildew are detected in apple after four years of field assessments. Mol Breed 17:329–339CrossRefGoogle Scholar
  8. Cara B, Giovannoni JJ (2008) Molecular biology of ethylene during tomato fruit development and maturation. Plant Sci 175:106–113CrossRefGoogle Scholar
  9. Carrari F, Fernie AR, Iusem ND (2004) Heard it through the grapevine? ABA and sugar cross-talk: the ASR story. Trends Plant Sci 9:57–59PubMedCrossRefGoogle Scholar
  10. Causse M, Duffe P, Gomez MC, Buret M, Damidaux R, Zamir D, Gur A, Chevalier C, Lemaire-Chamley M, Rothan C (2004) A genetic map of candidate genes and QTLs involved in tomato fruit size and composition. J Exp Bot 55:1671–1685PubMedCrossRefGoogle Scholar
  11. Chagné D, Gasic K, Crowhurst RN, Han Y, Bassett HC, Bowatte DR, Lawrence TJ, Rikkerink EHA, Gardiner SE, Korban SS (2008) Development of a set of SNP markers present in expressed genes of the apple. Genomics 92:353–358PubMedCrossRefGoogle Scholar
  12. Conner JP, Brown SK, Weeden NF (1998) Molecular-marker analysis of quantitative traits for growth and development in juvenile apple trees. Theor Appl Genet 96:1027–1035CrossRefGoogle Scholar
  13. Costa F, Stella S, Van de Weg WE, Guerra W, Cecchinel M, Dallavia J, Koller B, Sansavini S (2005) Role of the genes Md-ACO1 and Md-ACS1 in ethylene production and shelf life of apple Malus × domestica Borkh.). Euphytica 141:181–190CrossRefGoogle Scholar
  14. Costa F, Van de Weg W, Stella S, Dondini L, Pratesi D, Musacchi S, Sansavini S (2008) Map position and functional allelic diversity of Md-Exp7 a new putative expansin gene associated with fruit softening in apple Malus × domestica Borkh.). Tree Gen Genomes 4:575–586CrossRefGoogle Scholar
  15. Davies PJ (2004) Plant hormones: biosynthesis, signal transduction, action! Kluwer Academic Publishers, Dordrecht, Netherlands ISBN 1-4020-2684-6 (HB)Google Scholar
  16. Fernández-Fernández F, Evans K, Clarke J, Govan C, James C, Marič S, Tobutt K (2008) Development of an STS map of an interspecific progeny of Malus. Tree Gen Genomes 4:469–479CrossRefGoogle Scholar
  17. Fernie AR, Willmitzer L (2001) Molecular and biochemical triggers of potato tuber development. Plant Physiol 127:1459–1465PubMedCrossRefGoogle Scholar
  18. Gianfranceschi L, Soglio V (2004) The European project HiDRAS: innovative multidisciplinary approaches to breeding high quality disease resistant apples. Acta Hort 663:327–330Google Scholar
  19. Gianfranceschi L, Seglias N, Tarchini R, Komjanc M, Gessler C (1998) Simple sequence repeats for the genetic analysis of apple. Theor Appl Genet 96:1069–1076CrossRefGoogle Scholar
  20. Gillaspy G, Ben-David H, Gruissem W (1993) Fruits: a developmental perspective. Plant Cell 5:1439–1451PubMedCrossRefGoogle Scholar
  21. Giovannoni JJ (2001) Molecular biology of fruit maturation and ripening. Annu Rev Plant Physiol Plant Mol Biol 52:725–749PubMedCrossRefGoogle Scholar
  22. Giovannoni JJ (2004) Genetic regulation of fruit development and ripening. Plant Cell 16:S170–S180PubMedCrossRefGoogle Scholar
  23. Goff SA (2002) Collaboration on the rice genome. Science 296:45PubMedCrossRefGoogle Scholar
  24. Han Y, Gasic K, Marron B, Beever JE, Korban SS (2007) A BAC-based physical map of the apple genome. Genomics 89:630–637PubMedCrossRefGoogle Scholar
  25. Harada T, Sunako T, Wakasa Y, Soejima J, Satoh T, Niizeki M (2000) An allele of the 1-aminocyclopropane-1-carboxylate synthase gene (Md-ACS1) accounts for the low level of ethylene production in climacteric fruits of some apple cultivars. Theor Appl Genet 101:742–746CrossRefGoogle Scholar
  26. Hatey F, Tosser-Klopp G, Clouscard-Martinato C, MulsantP Gasser F (1998) Expressed sequence tags for genes: a review. Genet Sel Evol 30:521–541CrossRefGoogle Scholar
  27. Hemmat M, Weeden NF, Brown SK (2003) Mapping and evaluation of Malus × domestica microsatellites in apple and pear. J Am Soc Hortic Sci 128:515–520Google Scholar
  28. Igarashi M, Abe Y, Hatsuyama Y, Ueda T, Fukasawa-Akada T, Kon T, Kudo T, Sato T, Suzuki M (2008) Linkage maps of the apple (Malus × domestica Borkh.) cvs Ralls Janet and Delicious include newly developed EST markers. Mol Breed 22:95–118CrossRefGoogle Scholar
  29. Janssen BJ, Thodey K, Schaffer RJ, Alba R, Balakrishnan L, Bishop R, Bowen JH, Crowhurst RN, Gleave AP, Ledger S, McArtney S, Pichler FB, Snowden KC, Ward S (2008) Global gene expression analysis of apple fruit development from the floral bud to ripe fruit. BMC Plant Biol 8:16PubMedCrossRefGoogle Scholar
  30. King GJ, Maliepaard C, Lynn JR, Alston FH, Durel CE, Evans KM, Griffon B, Laurens F, Manganaris AG, Schrevens E, Tartarini S, Verhaegh J (2000) Quantitative genetic analysis and comparison of physical and sensory descriptors relating to fruit flesh firmness in apple (Malus pumila Mill). Theor Appl Genet 100:1074–1084CrossRefGoogle Scholar
  31. King GJ, Lynn JR, Dover CJ, Evans KM, Seymour GB (2001) Resolution of quantitative trait loci for mechanical measures accounting for genetic variation in fruit texture of apple (Malus pumila Mill). Theor Appl Genet 102:1227–1235CrossRefGoogle Scholar
  32. Korban SS, Vodkin LO, Liu L, Aldwinckle HS, Ksenija G, Gonzales DO, Malnoy M, Thimmapuram J, Carroll NJ, Goldsbrough P, Orvis K, Clifton S, Pape D, Martin M, Meyer R (2005) Large-scale analysis of EST sequences in the apple genome. In: Proceedings of the plant and animal genomes XIII Conference, W130. (Abstract), San Diego, CaliforniaGoogle Scholar
  33. Kosambi DD (1944) The estimation of map distances from recombination values. Ann Eugen 12:172–175CrossRefGoogle Scholar
  34. Lee Y, Yu G, Seo YS, Han SE, Choi Y, Kim D, Mok I, Kim WT, Sung S (2007) Microarray analysis of apple gene expression engaged in early fruit development. Plant Cell Rep 26:917–926PubMedCrossRefGoogle Scholar
  35. Li YC, Korol AB, Fahima T, Nevo E (2004) Microsatellites within genes: structure, function and evolution. Mol Biol Evol 21:991–1007PubMedCrossRefGoogle Scholar
  36. Liebhard R, Gianfranceschi L, Koller B, Ryder C, Tarchini R, Van De Weg E, Gessler C (2002) Development and characterisation of 140 new microsatellites in apple (Malus × domestica Borkh.). Mol Breed 10:217–241CrossRefGoogle Scholar
  37. Liebhard R, Koller B, Gianfranceschi L, Gessler C (2003a) Creating a saturated reference map for the apple (Malus × domestica Borkh.) genome. Theor Appl Genet 106:1497–1508PubMedGoogle Scholar
  38. Liebhard R, Koller B, Patocchi A, Kellerhals M, Pfammatter W, Jermini M, Gessler C (2003b) Mapping quantitative field resistance against apple scab in a ‘Fiesta’ × ‘Discovery’ progeny. Phytopathology 93:493–501PubMedCrossRefGoogle Scholar
  39. Liljegren SJ, Roeder AHK, Kempin SA, Gremski K, Østergaard L, Guimil S, Reyes DK, Yanofsky MF (2004) Control of fruit patterning in Arabidopsis by INDEHISCENT. Cell 116:843–853PubMedCrossRefGoogle Scholar
  40. Ma C, Casella G, Wu R (2002) Functional mapping of quantitative trait loci underlying the character process: a theoretical framework. Genetics 161:1751–1762PubMedGoogle Scholar
  41. Maliepaard C, Alston FH, van Arkel G, Brown LM, Chevreau E, Dunemann F, Evans KM, Gardiner S, Guilford P, van Heusden AW, Janse J, Laurens F, Lynn JR, Manganaris AG, den Nijs APM, Periam N, Rikkerink E, Roche P, Ryder C, Sansavini S, Schmidt H, Tartarini S, Verhaegh JJ, Vrielink-van Ginkel M, King GJ (1998) Aligning male and female linkage maps of apple (Malus pumila Mill) using multi-allelic markers. Theor Appl Genet 97:60–67CrossRefGoogle Scholar
  42. McClellan CA, Chang C (2008) The role of protein turnover in ethylene biosynthesis and response. Plant Sci 175:24–31PubMedCrossRefGoogle Scholar
  43. Moreno E, Obando J, Dos-Santos N, Fernández-Trujillo J, Monforte A, Garcia-Mas J (2008) Candidate genes and QTLs for fruit ripening and softening in melon. Theor Appl Genet 116:589–602PubMedCrossRefGoogle Scholar
  44. Mueller LA, Tanksley SD, Giovannoni JJ, van Eck J, Stack S, Choi D, Kim BD, Chen M, Cheng Z, Li C, Ling H, Xue Y, Seymour G, Bishop G, Bryan G, Sharma R, Khurana J, Tyagi A, Chattopadhyay D, Singh NK, Stiekema W, Lindhout P, Jesse T, Lankhorst RK, Bouzayen M, Shibata D, Tabata S, Granell A, Botella MA, Giuliano G, Frusciante L, Causse M, Zamir D (2005) The tomato sequencing project the first cornerstone of the international Solanaceae project (SOL). Comp Funct Genom 6:153–158CrossRefGoogle Scholar
  45. Naik S, Hampson C, Gasic K, Bakkeren G, Korban SS (2006) Development and linkage mapping of E-STS and RGA markers for functional gene homologues in apple. Genome 49:959–968PubMedCrossRefGoogle Scholar
  46. Newcomb RD, Crowhurst RN, Gleave AP, Rikkerink EHA, Allan AC, Beuning LL, Bowen JH, Gera E, Jamieson KR, Janssen BJ, Laing WA, McArtney S, Nain B, Ross GS, Snowden KC, Souleyre EJF, Walton EF, Yauk Y (2006) Analyses of expressed sequence tags from apple. Plant Physiol 141:147–166PubMedCrossRefGoogle Scholar
  47. Oraguzie NC, Iwanami H, Soejima J, Harada T, Hall A (2004) Inheritance of Md-ACS1 gene and its relationship to fruit softening in apple (Malus × domestica Borkh.). Theor Appl Genet 108:1526–1533PubMedCrossRefGoogle Scholar
  48. Oraguzie NC, Volz RK, Whitworth CJ, Bassett HCM, Hall AJ, Gardiner SE (2007) Influence of Md-ACS1 allelotype and harvest season within an apple germplasm collection on fruit softening during cold air storage. Postharvest Biol Tec 44:212–219CrossRefGoogle Scholar
  49. Pflieger S, Lefebvre V, Causse M (2001) The candidate gene approach in plant genetics: a review. Mol Breed 7:275–291CrossRefGoogle Scholar
  50. Plomion C, Hurme P, Frigerio J-M, Ridolfi M, Pot D, Pionneau C, Avila C, Gallardo F, David H, Neutelings G, Campbell M, Canovas FM, Savolainen O, Bodénès C, Kremer A (1999) Developing SSCP markers in two Pinus species. Mol Breed 5(1):21–31CrossRefGoogle Scholar
  51. Ricci U, Giovannucci Uzielli ML, Klintschar M (1999) Modified primers for D12S391 and a modified silver staining technique. Int J Legal Med 112:342–344PubMedCrossRefGoogle Scholar
  52. Rostoks N, Borevitz JO, Hedley PE, Russell J, Mudie S, Morris J, Cardle L, Marshall DF, Waugh R (2005) Single-feature polymorphism discovery in the barley transcriptome. Genome 6:R54CrossRefGoogle Scholar
  53. Rozen S, Skaletsky H (2000) Primer3 on the WWW for general users and for biologist programmers. Methods Mol Biol 132:365–386PubMedGoogle Scholar
  54. Sanbrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual 2nd ed. Cold Spring Harbor Laboratory. Cold Spring Harbor, New YorkGoogle Scholar
  55. Shuelke M (2000) An economic method for the fluorescent labelling of PCR fragments. Nat Biotechnol 18:233–234CrossRefGoogle Scholar
  56. Shulaev V, Korban SS, Sosinski B, Abbott AG, Aldwinckle HS, Folta KM, Iezzoni A, Main D, Arús P, Dandekar AM, Lewers K, Brown SK, Davis TM, Gardiner SE, Potter D, Veilleux RE (2008) Multiple models for Rosaceae genomics. Plant Physiol 147:985–1003PubMedCrossRefGoogle Scholar
  57. Silfverberg-Dilworth E, Matasci C, Van de Weg W, Van Kaauwen M, Walser M, Kodde L, Soglio V, Gianfranceschi L, Durel C, Costa F, Yamamoto T, Koller B, Gessler C, Patocchi A (2006) Microsatellite markers spanning the apple (Malus × domestica Borkh.) genome. Tree Gen Genomes 2:202–224CrossRefGoogle Scholar
  58. Soglio V, Costa F, Molthoff JW, Weemen-Hendriks WMJ, Schouten HJ, Gianfranceschi L (2009) Transcription analysis of apple fruit development using cDNA microarrays. Tree Gen Genomes 5:685–698CrossRefGoogle Scholar
  59. Van Ooijen JW, Voorrips RE (2001) JoinMap® Version 30 Software for the calculation of genetic linkage maps. Plant Research International, Wageningen, The NetherlandsGoogle Scholar
  60. Van Os H, Stam P, Visser RGF, van Eck HJ (2005) RECORD: a novel method for ordering loci on a genetic linkage map. Theor Appl Genet 112:30–40PubMedCrossRefGoogle Scholar
  61. Velasco R, Zharkikh A, Affourtit J, Dhingra A, Cestaro A, Kalyanaraman A, Fontana P, Bhatnagar S, Troggio M, Pruss D, Salvi S, Pindo M, Baldi P, Cavaiuolo M, Coppola G, Costa F, Cova V, Dal Ri A, Goremykin V, Komjanc M, Longhi S, Magnago P, Malacarne G, Malnoy M, Micheletti D, Moretto M, Perazzolli M, Si Ammour A, Vezzulli S, Zini E, Eldredge G, Fitzgerald LM, Gutin N, Lanchbury J, Macalma T, Mitchell JT, Reid J, Wardell B, Chen Z, Desany B, Niazi F, Palmer M, Jiwan D, Koepke T, Schaeffer S, Krishnan V, Wu C, Chu VT, King ST, Vick J, Tao Q, Mraz A, Stormo A, Stormo K, Bogden R, Ederle D, Stella A, Vecchietti A, Kater M, Masiero S, Lasserre P, Lespinasse Y, Allan AC, Bus V, Chagné D, Crowhurst R, Gleave A, Lavezzo E, Fawcett J, Proost S, Rouzè P, Sterck L, Toppo S, Lazzari B, Hellens RP, Durel CE, Gutin A, Bumgarner RE, Gardiner SE, Skolnick M, Egholm M, Van de Peer Y, Salamini F, Viola R (2010) The apple genome: polyploidy and fruit formation in a major perennial crop. Nat Genet 42:833–839PubMedCrossRefGoogle Scholar
  62. Wakasa Y, Hatsuyama Y, Takahashi A, Sato T, Niizeki M, Harada T (2003) Divergent expression of six expansin genes during apple fruit ontogeny. Eur J Hort Sci 68:253–259Google Scholar
  63. Wang A, Yamakake J, Kudo H, Wakasa Y, Hatsuyama Y, Igarashi M, Kasai A, Li T, Harada T (2009) Null mutation of the MdACS3 gene, coding for a ripening-specific 1-aminocyclopropane-1-carboxylate synthase, leads to long shelf life in apple fruit. Plant Physiol 151:391–399PubMedCrossRefGoogle Scholar
  64. Wenzl P, Li H, Carling J, Zhou M, Raman H, Paul E, Hearnden P, Maier C, Xia L, Caig V, Ovesnà J, Cakir M, Poulsen D, Wang J, Raman R, Smith KP, Muehlbauer GJ, Chalmers KJ, Kleinhofs A, Huttner E, Kilian A (2006) A high-density consensus map of barley linking DArT markers to SSR, RFLP and STS loci and agricultural traits. BMC Genomics 7:206PubMedCrossRefGoogle Scholar
  65. White PJ (2002) Recent advances in fruit development and ripening: an overview. J Exp Bot 53:1995–2000PubMedCrossRefGoogle Scholar
  66. Wińska–Krysiak M, Łata B (2006) Changes of Ca 2+ level and transporter gene expression in apples. Плaдaвoдcтвo (‘Fruit Growing’) 18(2):72–77Google Scholar
  67. Ye S, Dhillon S, Ke X, Collins AR, Day INM (2001) An efficient procedure for genotyping single nucleotide polymorphisms. Nucleic Acids Res 29:e88PubMedCrossRefGoogle Scholar
  68. Zini E, Biasioli F, Gasperi F, Mott D, Aprea E, Mark TD, Patocchi A, Gessler C, Komjanc M (2005) QTL mapping of volatile compounds in ripe apples detected by proton transfer reaction-mass spectrometry. Euphytica 145(3):269–279CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Valentina Cova
    • 1
  • Davide Perini
    • 2
  • Valeria Soglio
    • 2
  • Matteo Komjanc
    • 1
  • Eric van de Weg
    • 3
  • Cesare Gessler
    • 4
  • Luca Gianfranceschi
    • 2
  1. 1.IASMA Research and Innovation CentreFondazione Edmund MachS. Michele all’AdigeItaly
  2. 2.Dipartimento di Scienze Biomolecolari e BiotecnologieUniversità degli Studi di MilanoMilanItaly
  3. 3.Plant BreedingWageningen University and Research CentreWageningenThe Netherlands
  4. 4.Plant PathologyInstitute of Integrative Biology (IBZ)ZurichSwitzerland

Personalised recommendations