Molecular Breeding

, Volume 29, Issue 2, pp 529–541 | Cite as

Genetic structures of the CIMMYT international yield trial targeted to irrigated environments

  • Susanne Dreisigacker
  • Hailemichael Shewayrga
  • Jose Crossa
  • Vivi N. Arief
  • Ian H. DeLacy
  • Ravi P. Singh
  • Mark J. Dieters
  • Hans-Joachim Braun


International yield trials are assembled by CIMMYT to disseminate promising wheat breeding materials worldwide. To assess the genomic structure and linkage disequilibrium (LD) within this germplasm, wheat lines disseminated during 25 years of the Elite Spring Wheat Yield Trial (ESWYT) targeted for irrigated environments of the world were genotyped with the high-throughput Diversity Arrays Technology (DArT) marker system. Analyses of population structure assigned the ESWYT germplasm into five major sub-populations that are shaped by prominent CIMMYT wheat lines and their descendants. Based on genetic distance, we concluded that a constant level of genetic diversity was maintained over the years of ESWYT dissemination. Genetic distance between the individual ESWYT lines significantly increased when the ESWYT were grouped according to the differences in years of ESWYT dissemination, suggesting a systematic change in allele frequencies over time, most probably due to breeding and directional selection. By means of multiple regression analyses, 78 markers displaying a significant change in allele frequency across years were identified and interpreted as an indicator for constant selection. The markers identified were partly associated with grain yield, leaf, stem, and yellow rust and point to key genomic regions for further investigation. Large numbers of adjacent DArT marker pairs showed significant LD across the ESWYT population and within each of the five sub-populations identified. Sub-population differentiation measured by the fixation index and average genetic distance were highly correlated with LD levels, suggesting that the sub-populations themselves explain much of the LD.


International yield trials Population structure Temporal genetic diversity Linkage disequilibrium 



The authors would like to thank the numerous collaborators in national agricultural research institutes who carried out the Elite Spring Wheat Yield Trials (ESWYT). We also thank the International Nursery and Seed Distribution Units in CIMMYT-Mexico for preparing and distributing the seed and computerizing the data.


  1. Akbari M, Wenzl P, Vanessa C, Carling J, Xia L, Yang S, Uszynski G, Mohler V, Lehmensiek A, Kuchel H, Hayden MJ, Howes N, Sharp P, Rathmell B, Vaughan P, Huttner E, Kilian A (2006) Diversity arrays technology (DArT) for high-throughput profiling of the hexaploid wheat genome. Theor Appl Genet 113:1409–1420PubMedCrossRefGoogle Scholar
  2. Allard RW (1999) History of plant population genetics. Annu Rev Genet 33:1–37PubMedCrossRefGoogle Scholar
  3. Anderson JA, Churchill GA, Sutrique JE, Tanksley SD, Sorrells ME (1993) Optimizing parental selection for genetic linkage maps. Genome 36:181–186PubMedCrossRefGoogle Scholar
  4. Arief VN, Kroonenberg PM, DeLacy IH, Dieters MJ, Crossa J, Dreisigacker S, Braun H-J, Basford KE (2010) Construction and three-way ordination of the Wheat Phenome Atlas. J Appl Prob Stat 5:95–118Google Scholar
  5. Balfourier F, Roussel V, Strelchenko P, Exbrayat-Vinson F, Sourdille P, Boutet G, Koenig J, Ravel C, Mitrofanova O, Beckert M, Charmet G (2007) A worldwide bread wheat core collection arrayed in a 384-well plate. Theor Appl Genet 114:1265–1275PubMedCrossRefGoogle Scholar
  6. Braun H-J, Pfeiffer WH, Pollmer WG (1992) Environments for selecting widely adapted spring wheat. Crop Sci 32:1420–1427CrossRefGoogle Scholar
  7. Breseghello F, Sorrells ME (2006) Association analysis as a strategy for improvement of quantitative traits in plants. Crop Sci 46:1323–1330CrossRefGoogle Scholar
  8. Byerlee D, Dubin HJ (2010) Crop improvement in the CGIAR as a global success story of open access and international collaboration. Int J Commons 4(1):452–480Google Scholar
  9. Byth DE, Eisemann RL, DeLacy IH (1976) Two-way pattern analysis of a large data set to evaluate genotypic adaptation. Heredity 37:215–230CrossRefGoogle Scholar
  10. Camus-Kulandaivelu L, Veyieras JB, Gouesnard B, Charcosset A, Manicacci D (2007) Evaluating the reliability of structure outputs in case of relatedness between individuals. Crop Sci 47:887–892CrossRefGoogle Scholar
  11. Chao S, Zhang W, Dubcovsky J, Sorrells ME (2007) Evaluation of genetic diversity and genome-wide linkage disequilibrium among U.S. wheat (Triticum aestivum L.) germplasm representing different market classes. Crop Sci 47:1018–1030CrossRefGoogle Scholar
  12. Crossa J, Burgueno J, Dreisigacker S, Vargas M, Herrera-Foessel SA, Lillemo M, Singh RP, Trethowan RM, Warburton ML, Franco J, Reynolds M, Couch JH, Ortiz R (2007) Association analysis of historical bread wheat germplasm using additive genetic covariance of relatives and population structure. Genetics 177:1889–1913PubMedCrossRefGoogle Scholar
  13. Crossa J, de Los Campos G, Perez P, Pianola D, Bargueño J, Araus JL, Makumbi D, Dreisigacker S, Yan J, Arief VN, Banziger M, Braun H-J (2010) Prediction of genetic values of quantitative traits in plant breeding using pedigree and molecular markers. Genetics 186:713–724PubMedCrossRefGoogle Scholar
  14. DeLacy IH, Fox PN, Corbett JD, Crossa J, Rajaram S, Fischer RA, van Ginkel M (1993) Long-term association of locations for testing spring bread wheat. Euphytica 72:95–106CrossRefGoogle Scholar
  15. Dilbirligi M, Erayman M, Campbell BT, Randhawa HS, Baenzinger PS (2006) High density mapping and comparative analysis of agronomically important traits on wheat chromosome 3A. Genomics 88:74–87PubMedCrossRefGoogle Scholar
  16. Dreisigacker S, Zhang P, Warburton ML, Van Ginkel M, Hoisington D, Bohn M, Melchinger AE (2004) SSR and pedigree analysis of genetic diversity among CIMMYT wheat lines targeted to different mega environments. Crop Sci 44:381–388CrossRefGoogle Scholar
  17. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620PubMedCrossRefGoogle Scholar
  18. Fisher RA (1922) On the interpretation of χ2 from contingency tables, and the calculation of P. J R Stat Soc 85:87–94CrossRefGoogle Scholar
  19. Groos C, Robert N, Bervas E, Charmet G (2003) Genetic analysis of grain-protein content, GY, and thousand-kernel weight in bread wheat. Theor Appl Genet 106:1032–1040PubMedGoogle Scholar
  20. Harlan JR (1972) Genetics of disaster. J Environ Qual 1:212–215CrossRefGoogle Scholar
  21. Heisey PW, Lantican MA, Dubin HJ (2002) Impacts of international wheat breeding research in developing countries, 1966–1997. CIMMYT, Mexico, DFGoogle Scholar
  22. Kuchel H, Williams KJ, Langridge P, Eagles HA, Jefferies SP (2007) Genetic dissection of grain yield in bread wheat. I. QTL analysis. Theor Appl Genet 115:1029–1041PubMedCrossRefGoogle Scholar
  23. Kumar N, Kulwal PL, Balyan HS, Gupta PK (2007) QTL mapping for yield and yield contribution traits in two mapping populations of bread wheat. Mol Breed 19:163–177CrossRefGoogle Scholar
  24. Li S, Jia J, Wei X, Zhang X, Li L, Chen H, Fan Y, Sun H, Zhao X, Lei T, Xu Y, Jiang F, Wang H, Li L (2007) A intervarietal genetic map and QTL anaysis for yield traits in wheat. Mol Breed 20:167–178CrossRefGoogle Scholar
  25. Lillermo M, Van Ginkel M, Trethowan RM, Hernandez E, Crossa J (2005) Differential adaptation of CIMMYT bread wheat to global high temperature environments. Crop Sci 45:2443–2453CrossRefGoogle Scholar
  26. Lui K, Muse SU (2005) Power marker: integrated analysis environment for genetic marker data. Bioinformatics 21:2128–2129CrossRefGoogle Scholar
  27. Maccaferri M, Sanguineti MC, Noli E, Tuberosa R (2005) Population structure and long-range linkage disequilibrium in a durum wheat elite collection. Mol Breed 15:271–289CrossRefGoogle Scholar
  28. Meuwissen THE, Hayes BJ, Goddard ME (2001) Prediction of total genetic value using genome-wide dense marker maps. Genetics 157:1819–1829PubMedGoogle Scholar
  29. Neumann K, Kobiljski B, Denčić S, Varshney RK, Börner A (2010) Genome-wide association mapping: a case study in bread wheat (Triticum aestivum L.). Mol Breed 27:35–58. doi: 10.1007/s11032-010-9411-7 Google Scholar
  30. Pritchard JK, Stephen M, Donnely P (2000) Inference on population structure using multilocus genotype data. Genetics 155:945–959PubMedGoogle Scholar
  31. Quarrie SA, Steed A, Calestani C, Semikhodskii A, Lebreton C, Chinoy C, Steele N, Pljevljakusic D, Waterman E, Weyen J. Schondelmaier J, Habash DZ, Farmer P, Saker L, Clarkson DT, Abugalieva A, Yessimekova M, Turuspekov T, Abugalieva S, Tuberosa R, Sanguineti MC, Hollington PA, Aragues R, Royo A, Dodig D (2005) A high density genetic map of hexaploid wheat (Triticum aestivum L.) from the cross Chinese Spring × SQ1 and its use to compare QTLs for grain yield across a range of environments. Theor Appl Genet 110:865–880Google Scholar
  32. Rajaram S, Mann CHE, Ortiz-Ferrara G, Mujeeb-Kazi A (1983) Adaptation, stability, and high yield potential of certain 1B/1R CIMMYT wheats. In: Sakamoto S (eds) Proceedings of 6th international wheat genetics symposium, Kyoto, Japan. pp 613–621Google Scholar
  33. Rajaram S, Van Ginkel M, Fischer RA (1993) CIMMYT’s wheat breeding mega-environments (ME). International wheat genetics symposium 8, Beijing, China, 20–25 July 1993Google Scholar
  34. Rajaram S, Borlaug NE, Van Ginkel M (2002) CIMMYT international wheat breeding. In: Curtis BC, Rajaram S, Gomez Macpherson H (eds) Bread wheat improvement and production. FAO, Rome, pp 103–117Google Scholar
  35. Reeves T, Rajaram S, Van Ginkel M, Trethowan R, Braun H-J, Cassaday K (1999) New wheats for a secure, sustainable future. CIMMT, Mexico, DFGoogle Scholar
  36. Reif JC, Zhang P, Dreisigacker S, Warburton ML, Van Ginkel M, Hoisington D, Bohn M, Melchinger AE (2005) Wheat genetic diversity trends during domestication and breeding. Theor Appl Genet 110:859–864PubMedCrossRefGoogle Scholar
  37. Remington DL, Thornsberry JM, Matsuoka Y, Wilson LM, Whitt SR, Doebley J, Kresovich S, Goodman MM, Buckler ES (2001) Structure of linkage disequilibrium and phenotypic associations in the maize genome. Proc Natl Acad Sci USA 98:11479–11484PubMedCrossRefGoogle Scholar
  38. Rogers JS (1972) Studies in genetics V II. University of Texas Publication, Austin, pp 145–153Google Scholar
  39. Saghai-Maroof MA, Soliman K, Jorgensen RA, Allard RW (1984) Ribosomal DNA spacer length polymorphism in barley: Mendelian inheritance, chromosomal location and population dynamics. Proc Natl Acad Sci USA 81:8014–8018PubMedCrossRefGoogle Scholar
  40. Singh RP, Huerta-Espino J, Rajaram S, Crossa J (1998) Agronomic effects from chromosome translocations 7DL.7Ag and 1Bl.1RS in spring wheat. Crop Sci 38:27–33CrossRefGoogle Scholar
  41. Somers DJ, Banks T, DePauw R, Fox S, Clarke J, Pozniak C, McCartney C (2007) Genome-wide linkage disequilibrium analysis in bread wheat and durum wheat. Genome 50:557–567PubMedCrossRefGoogle Scholar
  42. Sourdille P, Snape JW, Cadalen T, Charmet G, Nakata N, Bernard S, Bernard M (2000) Detection of QTLs for heading time and photoperiod response in wheat using a doubled-haploid population. Genome 43:487–494PubMedCrossRefGoogle Scholar
  43. Stodart BJ, Mackay MC, Raman H (2007) Assessment of molecular diversity in landraces of bread wheat (Triticum aestivum L.) held in an ex-situ collection with Diversity Arrays Technology (DArTTM). Austr J Agron Res 58:1174–1182CrossRefGoogle Scholar
  44. Trethowan RM, Crossa J (2007) Lessons learnt from forty years of international spring bread wheat trials. Euphytica 157:385–390CrossRefGoogle Scholar
  45. Trethowan RM, Van Ginkel M, Rajaram S (2002) Progress in breeding wheat for yield and adaptation in global drought affected environments. Crop Sci 42:1441–1446CrossRefGoogle Scholar
  46. Trethowan RM, Van Ginkel M, Ammar K, Crossa J, Payne PS, Cucadar B, Rajaram S, Hernandez E (2003) Associations among twenty years of bread wheat evaluation environments. Crop Sci 43:1698–1711CrossRefGoogle Scholar
  47. Van de Wouw M, Van Hintum T, Kik C, Van Treuren R, Visser B (2010) Genetic diversity trends in twentieth century crop cultivars: a meta analysis. Theor Appl Genet 120:1241–1252PubMedCrossRefGoogle Scholar
  48. Weir BS (1996) Genetic data analysis II. Sinauer Associated, IncGoogle Scholar
  49. White J, Law JR, MacKay I, Chalmers KJ, Smith JSC, Kilian A, Powell W (2008) The genetic diversity of UK, USA and Australian cultivars of Triticum aestivum measured by DArT markers and considered by genome. Theor App Genet 116:439–453CrossRefGoogle Scholar
  50. Yu J, Pressoir G, Briggs WH, Vroh Bi I, Yamasaki M, Doebley JF, McMullen MD, Gaut BS, Nielsen DM, Holland JB, Kresovich S, Buckler ES (2006) A unified mixed-model method for association mapping that counts for multiple level of relatedness. Nat Genet 28:203–208CrossRefGoogle Scholar
  51. Zhou Y, He ZH, Liu JJ, Liu L (2003) Distribution of 1BL/1RS translocation in Chinese winter wheat and its effect on noodle quality. In: Pogna NE, Romano M, Pogna E, Galterio G (eds) Proceedings 10th international wheat genetics symposium, Paestum Italy, vol 3, pp 1419–1421Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Susanne Dreisigacker
    • 1
  • Hailemichael Shewayrga
    • 2
  • Jose Crossa
    • 1
  • Vivi N. Arief
    • 2
  • Ian H. DeLacy
    • 2
  • Ravi P. Singh
    • 1
  • Mark J. Dieters
    • 2
  • Hans-Joachim Braun
    • 1
  1. 1.International Maize and Wheat Improvement Center (CIMMYT)MéxicoMéxico
  2. 2.School of Agriculture and Food SciencesUniversity of QueenslandBrisbaneAustralia

Personalised recommendations