Molecular Breeding

, Volume 29, Issue 2, pp 457–466 | Cite as

Genetic mapping of quantitative trait loci controlling fruit size and shape in papaya

  • Andrea L. Blas
  • Qingyi Yu
  • Olivia J. Veatch
  • Robert E. Paull
  • Paul H. Moore
  • Ray MingEmail author


Papaya (Carica papaya L.) is a pan-tropical tree that bears fruit exhibiting a wide range of size and shape. Depending on variety and environment, papaya fruit may weigh from 0.2 kg up to 10 kg. Papaya fruit shape is a sex-linked trait ranging from spherical to ovate, cylindrical or pyriform. An F2 mapping population, produced from a cross between the Thai variety Khaek Dum, bearing 1.2 kg, red-fleshed fruit, and variety 2H94, a Hawaii Solo type bearing a 0.2 kg, yellow-fleshed fruit, was used to identify quantitative trait loci (QTLs) that influence papaya fruit characters including weight, diameter, length and shape. Fruit phenotype data, collected from two subpopulations planted in successive growing seasons, showed striking differences by year indicating significant genotype × environment interactions. Fourteen QTL with phenotypic effects ranging from 5 to 23% were identified across six linkage groups (LGs) with clusters of two or more QTL on LGs 02, 03, 07 and 09. These loci contain homologs to the tomato fruit QTL ovate, sun and fw2.2 regulating fruit size and shape. The papaya fruit QTL provide a starting point for dissecting the genetic pathways leading to extreme fruit size and shape and may prove useful for papaya breeders attempting to tailor new varieties to specific consumer markets.


Carica papaya Fruit size Fruit shape Quantitative trait loci 



We thank the HARC Kunia Substation Field Crew for their aid in set-up and maintenance of the mapping populations. Special thanks are also given for the assistance and technical support provided by Anne-Florence Lava and Gail Uru. Funding for this project was provided by the Hawaii Agriculture Research Center and a grant from the USDA Tropical Subtropical Agricultural Research program via the University of Hawaii.

Supplementary material

11032_2011_9562_MOESM1_ESM.doc (442 kb)
Supplementary material 1 (DOC 442 kb)


  1. Blas AL, Ming R, Liu Z, Veatch OJ, Paull RE, Moore PH, Yu Q (2010) Cloning of the papaya chromoplast-specific lycopene β-cyclase, CpCYC-b, controlling fruit flesh color reveals conserved microsynteny and a recombination hot spot. Plant Physiol 152:2013–2022PubMedCrossRefGoogle Scholar
  2. Cabezas JA, Cervera MT, Ruiz-García L, Carreño J, Martínez-Zapater JM (2006) A genetic analysis of seed and berry weight in grapevine. Genome 49:1572–1585PubMedCrossRefGoogle Scholar
  3. Causse M, Duffe P, Gomez MC, Buret M, Damidaux R, Zamir D, Gur A, Chevalier C, Lemaire-Chamley M, Rothan C (2004) A genetic map of candidate genes and QTLs involved in tomato fruit size and composition. J Exp Bot 55(403):1671–1685PubMedCrossRefGoogle Scholar
  4. Chaim BA, Paran I, Grube RC, Jahn M, van Wijk R, Peleman J (2001) QTL mapping of fruit-related traits in pepper (Capsicum anuum). Theor Appl Genet 102:1016–1028CrossRefGoogle Scholar
  5. Chaim BA, Borovsky Y, DeJong W, Paran I (2003a) Linkage of the A locus for the presence of anthocyanin and fs10.1 a major fruit shape QTL in pepper. Theor Appl Genet 106:889–894PubMedGoogle Scholar
  6. Chaim BA, Borovsky Y, Rao GU, Tanyolac B, Paran I (2003b) fs3.1: a major fruit shape QTL conserved in Capsicum. Genome 46:1–9PubMedCrossRefGoogle Scholar
  7. Chan YK, Paull RE (2008) Papaya Carica papaya L., Caricaceae. In: Janick J, Paull RE (eds) Encyclopedia of fruit and nuts. CABI, WallingfordGoogle Scholar
  8. Chaves-Bedoya G, Nuñez V (2007) A SCAR marker for sex type determination in Colombian genotypes of Carica papaya. Euphytica 153:215–220CrossRefGoogle Scholar
  9. Chen C, Yu Q, Hou S, Li Y, Eustice M, Skelton RL, Veatch OJ, Herdes RE, Diebold L, Saw J et al (2007) Construction of a sequence-tagged high-density genetic map of papaya for comparative structural and evolutionary genomics in Brassicales. Genetics 177:2481–2491PubMedCrossRefGoogle Scholar
  10. Chittenden LM, Schertz KF, Lin YR, Wing RA, Paterson AH (1994) A detailed RFLP map of Sorghum bicolor × S. propinquum, suitable for high-density mapping, suggests ancestral duplication of Sorghum chromosomes or chromosomal segments. Theor Appl Genet 87:925–933CrossRefGoogle Scholar
  11. Cong B, Tanksley SD (2006) FW2.2 and cell cycle control in developing tomato fruit: a possible example of gene co-option in the evolution of a novel organ. Plant Mol Biol 62:867–880PubMedCrossRefGoogle Scholar
  12. Cong B, Liu J, Tanksley SD (2002) Natural alleles at a tomato fruit size quantitative trait locus differ by heterochronic regulatory mutations. Proc Natl Acad Sci USA 99(21):13606–13611PubMedCrossRefGoogle Scholar
  13. Constantini L, Battilana J, Lamaj F, Fanizza G, Grando MS (2008) Berry and phenology-related traits in grapevine (Vitis vinifera L.): from quantitative trait loci to underlying genes. BMC Plant Biol 8:38CrossRefGoogle Scholar
  14. Dalbó MA, Ye GN, Weeden NF, Wilcox WF, Reisch BI (2001) Marker-assisted selection for powdery mildew resistance in grape. J Am Soc Hort Sci 126(1):83–89Google Scholar
  15. De Vicente MC, Tanksley SD (1993) QTL analysis of transgressive segregation in an interspecific tomato cross. Genetics 134:585–596Google Scholar
  16. Deputy JC, Ming R, Ma H, Liu Z, Fitch MMM et al (2002) Molecular markers for sex determination in papaya (Carica papaya L.). Theor Appl Genet 106(1):107–111PubMedGoogle Scholar
  17. FAOStat (2007) Food and Agriculture Organization of the United Nations: Crop production statistics. Accessed 30 Jun 2010
  18. Frary A, Nesbitt TC, Frary A, Grandillo S, Van der Knaap E et al (2000) fw2.2: a quantitative trait locus key to the evolution of tomato fruit size. Science 289:85–88PubMedCrossRefGoogle Scholar
  19. García MR, Asíns MJ, Carbonell EA (2000) QTL analysis of yield and seed number in citrus. Theor Appl Genet 101(3):487–493CrossRefGoogle Scholar
  20. Gonzalo MJ, van der Knaap E (2008) A comparative analysis into the genetic bases of morphology in tomato varieties exhibiting elongated fruit shape. Theor Appl Genet 116:647–656PubMedCrossRefGoogle Scholar
  21. Grandillo S, Tanksley SD (1996) QTL analysis of horticultural traits differentiating the cultivated tomato from the closely related species Lycopersicon pimpinellifolium. Theor Appl Genet 92(8):935–951CrossRefGoogle Scholar
  22. Grandillo S, Ku HM, Tanksley SD (1999) Identifying the loci responsible for natural variation in fruit size and shape in tomato. Theor Appl Genet 99:978–987CrossRefGoogle Scholar
  23. Harjes CE, Rocheford TR, Bai L, Brutnell TP, Kandianis CB et al (2008) Natural genetic variation in lycopene epsilon cyclase tapped for maize biofortification. Science 319(5861):330–333PubMedCrossRefGoogle Scholar
  24. Hedrick UP, Booth NO (1907) Mendelian characters in tomatoes. Proc Am Soc Hort Sci 5:19–24Google Scholar
  25. Huang N, Angeles ER, Domingo J, Magpantay G, Singh S et al (1997) Pyramiding of bacterial blight resistance genes in rice: marker-assisted selection using RFLP and PCR. Theor Appl Genet 95(3):313–320CrossRefGoogle Scholar
  26. Ku HM, Doganlar S, Chen KY, Tanksley SD (1999) Genetic basis of pear-shaped fruit in tomato. Theor Appl Genet 99:844–850CrossRefGoogle Scholar
  27. Ku HM, Liu J, Doganlar S, Tanksley SD (2001) Exploitation of Arabidopsis-tomato synteny to construct a high-resolution map of the ovate-containing region in tomato chromosome 2. Genome 44:470–475PubMedGoogle Scholar
  28. Lippman Z, Tanksley SD (2001) Dissecting the genetic pathway to extreme fruit size in tomato using a cross between the small-fruited wild species Lycopersicon pimpinellifolium and L. esculentum var. Giant Heirloom. Genetics 158:413–422PubMedGoogle Scholar
  29. Liu J, Cong B, Tanksley SD (2003) Generation and analysis of an artificial gene dosage series in tomato to study the mechanisms by which the cloned quantitative trait locus fw2.2 controls fruit size. Plant Physiol 132:292–299PubMedCrossRefGoogle Scholar
  30. MacKay TFC (2001) The genetic architecture of quantitative traits. Annu Rev Genet 35:303–339PubMedCrossRefGoogle Scholar
  31. Mejía N, Gebauer M, Muñoz L, Hewstone N, Muñoz C, Hinrichsen P (2007) Identification of QTLs for seedlessness, berry size and ripening date in a seedless × seedless table grape progeny. Am J Enol Vitic 58(4):499–507Google Scholar
  32. Ming R, Hou S, Feng Y, Yu Q, Dionne-Laporte A, Saw JH, Senin P, Wang W, Ly BV, Lewis KL et al (2008) The draft genome of the transgenic tropical fruit tree papaya (Carica papaya Linnaeus). Nature 452:991–996PubMedCrossRefGoogle Scholar
  33. Nakasone HY, Paull RE (1998) Papaya. In: Nakasone HY, Paull RE (eds) Tropical fruit. CABI, New YorkGoogle Scholar
  34. Nesbitt TC, Tanksley SD (2001) fw2.2 directly affects the size of developing fruit, with secondary effects on fruit number and photosynthate partitioning. Plant Physiol 127:575–583PubMedCrossRefGoogle Scholar
  35. Paull RE, Irikura B, Wu P, Turano H, Chen NJ, Blas A, Fellman JK, Gschwend AR, Wai CM, Yu Q et al (2008) Fruit development, ripening and quality related genes in the papaya genome. Trop Plant Biol 1:246–277Google Scholar
  36. Rieger M (2006) Papaya (Carica papaya). In: Introduction to fruit crops. Haworth Press, New YorkGoogle Scholar
  37. Rodriguez-Amaya DB (2003) Enhancing the carotenoid levels of food through agriculture and food technology. FoodAfrica Accessed 30 Jun 2010
  38. Tanksley SD, Grandillo S, Fulton TM, Zamir D, Eshed Y et al (1996) Advanced backcross QTL analysis in a cross between an elite processing line of tomato and its wild relative, L. pimpinellifolium. Theor Appl Genet 92:213–224CrossRefGoogle Scholar
  39. Van der Knaap E, Tanksley SD (2001) Identification and characterization of a novel locus controlling early fruit development in tomato. Theor Appl Genet 103(2–3):353–358CrossRefGoogle Scholar
  40. Van der Knaap E, Tanksley SD (2003) The making of a bell pepper-shaped tomato fruit: identification of loci controlling fruit morphology in Yellow Stuffer tomato. Theor Appl Genet 107(1):139–147PubMedGoogle Scholar
  41. Van Ooijen JW (2004) MapQTL® 5, software for the mapping of quantitative trait loci in experimental populations. Kyazma BV, WageningenGoogle Scholar
  42. Van Ooijen JW, Voorrips RE (2001) JoinMap® 3.0 software for the calculation of genetic linkage maps. Plant Research International, WageningenGoogle Scholar
  43. Varga A, Bruinsma J (1986) Tomato. In: Monselise SP (ed) CRC handbook of fruit set and development. CRC Press, Boca RatonGoogle Scholar
  44. WHO (2007) Vitamin A deficiency. World Health Organization Accessed 30 Jun 2010
  45. William HM, Trethowan R, Crosby-Galva EM (2007) Wheat breeding assisted by markers: CIMMYT’s experience. Euphytica 157(3):307–319CrossRefGoogle Scholar
  46. Zygier S, Chaim AB, Efrati A, Kaluzky G, Borovsky Y, Paran I (2005) QTLs mapping for fruit size and shape in chromosomes 2 and 4 in pepper and a comparison of the pepper QTL map with that of tomato. Theor Appl Genet 111(3):437–445PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Andrea L. Blas
    • 1
    • 2
    • 6
  • Qingyi Yu
    • 2
    • 3
  • Olivia J. Veatch
    • 1
    • 2
    • 7
  • Robert E. Paull
    • 4
  • Paul H. Moore
    • 2
  • Ray Ming
    • 2
    • 5
    Email author
  1. 1.Department of Molecular Biosciences and BioengineeringUniversity of HawaiiHonoluluUSA
  2. 2.Hawaii Agriculture Research CenterKuniaUSA
  3. 3.Texas AgriLife ResearchTexas A & M UniversityWeslacoUSA
  4. 4.Department of Tropical Plant and Soil SciencesUniversity of HawaiiHonoluluUSA
  5. 5.Department of Plant BiologyUniversity of Illinois at Urbana-ChampaignUrbanaUSA
  6. 6.Centre de Recerca AgrigenòmicaIRTACabrilsSpain
  7. 7.Center for Human Genetics ResearchVanderbilt UniversityNashvilleUSA

Personalised recommendations