Advertisement

Molecular Breeding

, Volume 29, Issue 2, pp 427–436 | Cite as

Quantitative trait loci for salinity tolerance in barley (Hordeum vulgare L.)

  • Gaofeng Zhou
  • Peter Johnson
  • Peter R. Ryan
  • Emmanuel Delhaize
  • Meixue ZhouEmail author
Article

Abstract

Salinity stress is a major limitation in barley production. Substantial genetic variation in tolerance occurs among genotypes of barley, so the development of salt-tolerant cultivars is a potentially effective approach for minimizing yield losses. The lack of economically viable methods for screening salinity tolerance in the field remains an obstacle to breeders, and molecular marker-assisted selection is a promising alternative. In this study, salinity tolerance of 172 doubled-haploid lines generated from YYXT (salinity-tolerant) and Franklin (salinity-sensitive) was assessed in glasshouse trials during the vegetative phase. A high-density genetic linkage map was constructed from 76 pairs of simple sequence repeats and 782 Diversity Arrays Technology markers which spanned a total of 1,147 cM. Five significant quantitative trait loci (QTL) for salinity tolerance were identified on chromosomes 1H, 2H, 5H, 6H and 7H, accounting for more than 50% of the phenotypic variation. The tolerant variety, YYXT, contributed the tolerance to four of these QTL and Franklin contributed the tolerance to one QTL on chromosome 1H. Some of these QTL mapped to genomic regions previously associated with salt tolerance in barley and other cereals. Markers associated with the major QTL identified in this study have potential application for marker-assisted selection in breeding for enhanced salt tolerance in barley.

Keywords

Barley QTL Salinity 

Notes

Acknowledgments

This work was supported by a Grains Research and Development Corporation of Australia grant to Meixue Zhou.

Supplementary material

11032_2011_9559_MOESM1_ESM.pdf (522 kb)
Supplementary material 1 (PDF 522 kb)

References

  1. Ahn S, Anderson JA, Sorrells ME, Tanksley SD (1993) Homoeologous relationships of rice, wheat and maize chromosomes. Mol Gen Genet 241:483–490PubMedCrossRefGoogle Scholar
  2. Alsop B, Farre A, Wenzl P, Wang J, Zhou M, Romagosa I, Kilian A, Steffenson B (2010) Development of wild barley-derived DArT markers and their integration into a barley consensus map. Mol Breed 27:77–92CrossRefGoogle Scholar
  3. Aslam M, Qureshi RH, Ahmed N (1993) A rapid screening technique for salt tolerance in rice (Oryza sativa L.). Plant Soil 150:99–107CrossRefGoogle Scholar
  4. Brouwer C, Goffeau A, Heibloem M (1985) Irrigation water management: training manual no. 1—introduction to irrigation. Food and Agriculture Organization of the United Nations, Via delle Terme di Caracalla, 00100 Rome, ItalyGoogle Scholar
  5. Casierra Posada F, Ebert G, Ludders P (2000) Salinity effect of sodium chloride on nutrient balance in lulo plants (Solanum quitoense L.). Agr Colomb 17:85–90Google Scholar
  6. Chen Z, Newman I, Zhou M, Mendham N, Zhang G, Shabala S (2005) Screening plants for salt tolerance by measuring K+ flux: a case study for barley. Plant Cell Environ 28:1230–1246CrossRefGoogle Scholar
  7. Chen H, Cui S, Fu S, Gai J, Yu D (2008a) Identification of quantitative trait loci associated with salt tolerance during seedling growth in soybean (Glycine max L.). Aust J Agr Res 59:1086–1091CrossRefGoogle Scholar
  8. Chen Z, Shabala S, Mendham N, Newman I, Zhang G, Zhou M (2008b) Combining ability of salinity tolerance on the basis of NaCl-induced K+ flux from roots of barley. Crop Sci 48:1382–1388CrossRefGoogle Scholar
  9. Cockram J, Chiapparino E, Taylor SA, Stamati K, Donini P, Laurie DA, O’Sullivan DM (2007) Haplotype analysis of vernalization loci in European barley germplasm reveals novel VRN-H1 alleles and a predominant winter VRN-H1/VRN-H2 multi-locus haplotype. Theor Appl Genet 115:993–1001PubMedCrossRefGoogle Scholar
  10. Dubcovsky J, Maria GS, Epstein E, Luo MC, Dvorak J (1996) Mapping of the K+/Na+ discrimination locus Kna1 in wheat. Theor Appl Genet 92:448–454CrossRefGoogle Scholar
  11. Echt CS, May-Marquardt P, Hseih M, Zahorchak R (1996) Characterization of microsatellite markers in eastern white pine. Genome 39:1102–1108PubMedCrossRefGoogle Scholar
  12. Eleuch L, Jilal A, Grando S, Ceccarelli S, MvK Schmising, Tsujimoto H, Hajer A, Daaloul A, Baum M (2008) Genetic diversity and association analysis for salinity tolerance, heading date and plant height of barley germplasm using simple sequence repeat markers. J Integr Plant Biol 50:1004–1014PubMedCrossRefGoogle Scholar
  13. FAO (2000) Crops and drops: making the best use of water for agriculture. FAO Advance Edition, RomeGoogle Scholar
  14. FAO (2008) FAO land and plant nutrition management serviceGoogle Scholar
  15. Farshadfar E, Safavi SA, Aghaee-Sarbarzeh M (2008) Locating QTLs controlling salt tolerance in barley using wheat-barley disomic addition lines. Asian J Plant Sci 7:149–155CrossRefGoogle Scholar
  16. Foolad MR, Zhang LP, Lin GY (2001) Identification and validation of QTLs for salt tolerance during vegetative growth in tomato by selective genotyping. Genome 44:444–454PubMedCrossRefGoogle Scholar
  17. Heenan DP, Lewin LG, McCaffery DW (1988) Salinity tolerance in rice varieties at different growth stages. Aust J Exp Agr 28:343–349CrossRefGoogle Scholar
  18. Huang S, Spielmeyer W, Lagudah ES, James RA, Platten JD, Dennis ES, Munns R (2006) A sodium transporter (HKT7) is a candidate for Nax1, a gene for salt tolerance in durum wheat. Plant Physiol 142:1718–1727PubMedCrossRefGoogle Scholar
  19. Hulbert SH, Richter TE, Axtell JD, Bennetzen JL (1990) Genetic mapping and characterization of sorghum and related crops by means of maize DNA probes. Proc Natl Acad Sci USA 87:4251–4255PubMedCrossRefGoogle Scholar
  20. James RA, Munns R, Von Caemmerer S, Trejo C, Miller C, Condon T (2006) Photosynthetic capacity is related to the cellular and subcellular partitioning of Na+, K+ and Cl in salt-affected barley and durum wheat. Plant Cell Environ 29:2185–2197PubMedCrossRefGoogle Scholar
  21. Jaradat AA, Shahid M, Al-Maskri A (2004) Genetic diversity in the Batini barley landrace from Oman: II. Response to salinity stress. Crop Sci 44:997–1007CrossRefGoogle Scholar
  22. Laurie DA, Pratchett N, Bezant JH, Snape JW (1995) RFLP mapping of five major genes and eight quantitative trait loci controlling flowering time in a winter × spring barley (Hordeum vulgare L.) cross. Genome 38:575–585PubMedCrossRefGoogle Scholar
  23. Lee GJ, Boerma HR, Villagarcia MR, Zhou X, Carter TE Jr, Li Z, Gibbs MO (2004) A major QTL conditioning salt tolerance in S-100 soybean and descendent cultivars. Theor Appl Genet 109:1610–1619PubMedCrossRefGoogle Scholar
  24. Lee S, Ahn J, Cha Y, Yun D, Lee M, Ko J, Lee K, Eun M (2006) Mapping of quantitative trait loci for salt tolerance at the seedling stage in rice. Mol Cells 21:192–196PubMedGoogle Scholar
  25. Lee SY, Ahn JH, Cha YS, Yun DW, Lee MC, Ko JC, Lee KS, Eun MY (2007) Mapping QTLs related to salinity tolerance of rice at the young seedling stage. Plant Breed 126:43–46CrossRefGoogle Scholar
  26. Lin H, Yanagihara S, Zhuang J, Senboku T, Zheng K, Yashima S (1998) Identification of QTL for salt tolerance in rice via molecular markers. Chinese J Rice Sci 12:72–78Google Scholar
  27. Lin HX, Zhu MZ, Yano M, Gao JP, Liang ZW, Su WA, Hu XH, Ren ZH, Chao DY (2004) QTLs for Na+ and K+ uptake of the shoots and roots controlling rice salt tolerance. Theor Appl Genet 108:253–260PubMedCrossRefGoogle Scholar
  28. Lindsay MP, Lagudah ES, Hare RA, Munns R (2004) A locus for sodium exclusion (Nax1), a trait for salt tolerance, mapped in durum wheat. Funct Plant Biol 31:1105–1114CrossRefGoogle Scholar
  29. Liu EE, Wang Z, Jia J (2001) Solutes accumulation in salt-tolerant cell line of wheat. J S China Agr Univ 22:93Google Scholar
  30. Ma L, Zhou E, Huo N, Zhou R, Wang G, Jia J (2007) Genetic analysis of salt tolerance in a recombinant inbred population of wheat (Triticum aestivum L.). Euphytica 153:109–117CrossRefGoogle Scholar
  31. Mano Y, Takeda K (1997) Mapping quantitative trait loci for salt tolerance at germination and the seedling stage in barley (Hordeum vulgare L.). Euphytica 94:263–272CrossRefGoogle Scholar
  32. Mer RK, Prajith PK, Pandya DH, Pandey AN (2000) Effect of salts on germination of seeds and growth of young plants of Hordeum vulgare, Triticum aestivum, Cicer arietinum and Brassica juncea. J Agron Crop Sci 185:209–217CrossRefGoogle Scholar
  33. Mohammadi-Nejad G, Arzani A, Rezai AM, Singh RK, Gregorio GB (2008) Assessment of rice genotypes for salt tolerance using microsatellite markers associated with the saltol QTL. Afr J Biotechnol 7:730–736Google Scholar
  34. Moore G, Roberts M, Aragon-Alcaide L, Foote T (1997) Centromeric sites and cereal chromosome evolution. Chromosoma 105:321–323PubMedGoogle Scholar
  35. Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681PubMedCrossRefGoogle Scholar
  36. Nguyen Thi L, Yanagihara S, Bui Chi B (2001) QTL analysis of salt tolerance in rice (Oryza sativa L.). SABRAO J Breed Genet 33:11–20Google Scholar
  37. Ren Z, Gao J, Li LG, Cai X, Huang W, Chao D, Zhu M, Wang Z, Luan S, Lin H (2005) A rice quantitative trait locus for salt tolerance encodes a sodium transporter. Nat Genet 37:1141–1146PubMedCrossRefGoogle Scholar
  38. Rivandi J, Miyazaki J, Hrmova M, Pallotta M, Tester M, Collins NC (2011) A SOS3 homologue maps to HvNax4, a barley locus controlling an environmentally sensitive Na+ exclusion trait. J Exp Bot 62:1201–1216PubMedCrossRefGoogle Scholar
  39. Rogowsky PM, Guidet FLY, Langridge P, Shepherd KW, Koebner RMD (1991) Isolation and characterization of wheat-rye recombinants involving chromosome arm 1DS of wheat. Theor Appl Genet 82:537–544CrossRefGoogle Scholar
  40. Shavrukov Y, Gupta NK, Miyazaki J, Baho MN, Chalmers KJ, Tester M, Langridge P, Collins NC (2010) HvNax3-a locus controlling shoot sodium exclusion derived from wild barley (Hordeum vulgare ssp spontaneum). Funct Integr Genomic 10:277–291CrossRefGoogle Scholar
  41. Siahsar BA, Aminfar Z, Heidary M, Mehdinezhad N, Ghanbari A (2009) QTL mapping for salt tolerance in barley. New Biotechnol 25:s304CrossRefGoogle Scholar
  42. Slavich PG, Read BJ, Cullis BR (1990) Yield response of barley germplasm to field variation in salinity quantified using the EM-38. Aust J Exp Agr 30:551–556CrossRefGoogle Scholar
  43. Sorrells ME, Rota Ml, Bermudez-Kandianis CE, Greene RA, Kantety R, Munkvold JD, Miftahudin MA, Ma XF, Gustafson PJ, Qi LL, Echalier B, Gill BS, Matthews DE, Lazo GR, Chao S, Anderson OD, Edwards H, Linkiewicz AM, Dubcovsky J, Akhunov ED, Dvorak J, Zhang DH, Nguyen HT, Peng JH, Lapitan NLV (2003) Comparative DNA sequence analysis of wheat and rice genomes. Genome Res 13:1818–1827PubMedGoogle Scholar
  44. Szabolcs I (1989) Salt-affected soils. CRC Press, Boca Raton, FLGoogle Scholar
  45. Tajbakhsh M, Zhou MX, Chen ZH, Mendham NJ (2006) Physiological and cytological response of salt-tolerant and non-tolerant barley to salinity during germination and early growth. Aust J Exp Agr 46:555–562CrossRefGoogle Scholar
  46. Tanksley SD, Ganal MW, Martin GB (1995) Chromosome landing: a paradigm for map-based gene cloning in plants with large genomes. Trends Genet 11:63–68PubMedCrossRefGoogle Scholar
  47. Van Ooijen JW, Kyazma BV (2004) MapQTL® 5, software for the mapping of quantitative trait loci in experimental populations. WageningenGoogle Scholar
  48. Van Ooijen JW, Voorrips RE (2001) JoinMap® 3.0, software for the calculation of genetic linkage maps. Plant Research International, WageningenGoogle Scholar
  49. Varshney RK, Marcel TC, Ramsay L, Russell J, Roder MS, Stein N, Waugh R, Langridge P, Niks RE, Graner A (2007) A high density barley microsatellite consensus map with 775 SSR loci. Theor Appl Genet 114:1091–1103PubMedCrossRefGoogle Scholar
  50. Villalta I, Bernet GP, Carbonell EA, Asins MJ (2007) Comparative QTL analysis of salinity tolerance in terms of fruit yield using two solanum populations of F7 lines. Theor Appl Genet 114:1001–1017PubMedCrossRefGoogle Scholar
  51. Voorrips RE (2002) MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered 93:77–78PubMedCrossRefGoogle Scholar
  52. Wang JM, Yang JM, McNeil DL, Zhou MX (2010) Identification and molecular mapping of a dwarfing gene in barley (Hordeum vulgare L.) and its correlation with other agronomic traits. Euphytica 175:331–342CrossRefGoogle Scholar
  53. Wenzl P, Carling J, Kudrna D, Jaccoud D, Huttner E, Kleinhofs A, Kilian A (2004) Diversity Arrays Technology (DArt) for whole-genome profiling of barley. Proc Natl Acad Sci USA 101:9915–9920PubMedCrossRefGoogle Scholar
  54. Wenzl P, Li H, Carling J, Zhou M, Raman H, Paul E, Hearnden P, Maier C, Xia L, Caig V, Ovesna J, Cakir M, Poulsen D, Wang J, Raman R, Smith KP, Muehlbauer GJ, Chalmers KJ, Kleinhofs A, Huttner E, Kilian A (2006) A high-density consensus map of barley linking DArT markers to SSR, RFLP and STS loci and agricultural traits. BMC Genomics 7:206PubMedCrossRefGoogle Scholar
  55. Witzel K, Weidner A, Surabhi GK, Varshney RK, Kunze G, Buck-Sorlin GH, Borner A, Mock HP (2010) Comparative analysis of the grain proteome fraction in barley genotypes with contrasting salinity tolerance during germination. Plant Cell Environ 33:211–222PubMedCrossRefGoogle Scholar
  56. Xue D, Huang Y, Zhang X, Wei K, Westcott S, Li C, Chen M, Zhang G, Lance R (2009) Identification of QTLs associated with salinity tolerance at late growth stage in barley. Euphytica 169:187–196CrossRefGoogle Scholar
  57. Yan L, Fu D, Li C, Blechl A, Tranquilli G, Bonafede M, Sanchez A, Valarik M, Yasuda S, Dubcovsky J (2006) The wheat and barley vernalization gene VRN3 is an orthologue of FT. Proc Natl Acad Sci USA 103:19581–19586PubMedCrossRefGoogle Scholar
  58. Yang J, Sun Y, Cheng L, Zhou Z, Wang Y, Zhu L, Cang J, Xu J, Li Z (2009) Genetic background effect on QTL mapping for salt tolerance revealed by a set of reciprocal introgression line populations in rice. Acta Agron Sin 35:974–982CrossRefGoogle Scholar
  59. Yao M, Wang J, Chen H, Zhai H, Zhang H (2005) Inheritance and QTL mapping of salt tolerance in rice. Rice Sci 12:25–32Google Scholar
  60. Zhou M (2010) Accurate phenotyping reveals better QTLs for waterlogging tolerance in barley. Plant Breed. doi: 10.1111/j.1439-0523.2010.01792.x
  61. Zhou MX, Li HB, Mendham NJ (2007) Combining ability of waterlogging tolerance in barley. Crop Sci 47:278–284CrossRefGoogle Scholar
  62. Zitzewitz Jv, Szucs P, Dubcovsky J, Yan LL, Francia E, Pecchioni N, Casas A, Chen THH, Hayes PM, Skinner JS (2005) Molecular and structural characterization of barley vernalization genes. Plant Mol Biol 59:449–467CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Gaofeng Zhou
    • 1
    • 2
    • 3
  • Peter Johnson
    • 2
  • Peter R. Ryan
    • 3
  • Emmanuel Delhaize
    • 3
  • Meixue Zhou
    • 2
    Email author
  1. 1.National Maize Improvement Center of ChinaChina Agricultural UniversityBeijingPeople’s Republic of China
  2. 2.Tasmanian Institute of Agricultural ResearchUniversity of TasmaniaKings MeadowsAustralia
  3. 3.CSIRO Plant IndustryCanberraAustralia

Personalised recommendations