Advertisement

Molecular Breeding

, Volume 29, Issue 2, pp 335–348 | Cite as

Genetic mapping and quantitative trait locus analysis of fiber quality traits using a three-parent composite population in upland cotton (Gossypium hirsutum L.)

  • Ke Zhang
  • Jian Zhang
  • Jing Ma
  • Shiyi Tang
  • Dajun Liu
  • Zhonghua Teng
  • Dexin Liu
  • Zhengsheng ZhangEmail author
Article

Abstract

Composite cross populations (CP) developed from three or more cultivars/lines are frequently used to improve agronomic and economic traits in crop cultivar development programs. Employing CP in linkage map construction and quantitative trait locus (QTL) mapping may increase the marker density of upland cotton (Gossypium hirsutum L.) genetic maps, exploit more adequate gene resources and facilitate marker-assisted selection (MAS). To construct a relatively high-density map and identify QTL associated with fiber quality traits in upland cotton, three elite upland cultivars/lines, Yumian 1, CRI 35 and 7,235, were used to obtain the segregating population, Yumian 1/CRI 35//Yumian 1/7,235. A genetic map containing 978 simple sequence repeat (SSR) loci and 69 linkage groups was constructed; the map spanned 4,184.4 cM, covering approximately 94.1% of the entire tetraploid cotton genome. A total of 63 QTL were detected, explaining 8.1–55.8% of the total phenotypic variance: 11 QTL for fiber elongation, 16 QTL for fiber length, 9 QTL for fiber micronaire reading, 10 QTL for fiber strength and 17 QTL for fiber length uniformity. The genetic map and QTL detected for fiber quality traits are promising for further breeding programs of upland cotton with improved fiber quality.

Keywords

Composite cross population Fiber quality Linkage map QTL Upland cotton 

Notes

Acknowledgments

This study was financially supported by Hi-tech Research and Development Program of China (2006AA10Z1D3) and the Natural Science Foundation of China (30871556, 30900910).

References

  1. Anderson CG (1999) Cotton marketing. In: Smith CW, Cothren JT (eds) Cotton; origin history technology, and production. Wiley, New York, pp 659–679Google Scholar
  2. Bridge RR, Meredith WR (1983) Comparative performance of obsolete and current cotton cultivars. Crop Sci 23:949–952CrossRefGoogle Scholar
  3. Chen L, Zhang ZS, Hu MC, Wang W, Zhang J, Liu DJ, Zheng J, Zheng FM, Ma J (2008) Genetic linkage map construction and QTL mapping for yield and fiber quality in upland cotton (Gossypium hirsutum L.). Acta Agron Sin 34:1199–1205 (in Chinese with English abstract)Google Scholar
  4. Chen H, Qian N, Guo WZ, Song QP, Li BC, Deng FJ, Dong CG, Zhang TZ (2009) Using three overlapped RILs to dissect genetically clustered QTL for fiber strength on Chro.D8 in Upland cotton. Theor Appl Genet 119:605–612PubMedCrossRefGoogle Scholar
  5. Culp TW, Harrell DC (1974) Breeding quality cotton at the Pee Dee experiment station, Florence, SC, USDA Publ, ARS-S-30Google Scholar
  6. Frelichowski JE, Palmer MB, Dorrie M, Tomkins JP, Cantrell RG, Stelly DM, John Y, Kohel RJ, Ulloa M (2006) Cotton genome mapping with new microsatellites from Acala ‘Maxxa’ BAC–ends. Mol Genet Genomics 275:479–491PubMedCrossRefGoogle Scholar
  7. Green CC, Culp TW (1990) Simultaneous improvement of yield, fiber quality, and yarn strength in Upland cotton. Crop Sci 30:66–69CrossRefGoogle Scholar
  8. Gregory SR, Hernandez E, Savoy BR (1999) Cottonseed processing. In: Smith CW, Cothren JT (eds) Cotton; origin history technology, and production. Wiley, New York, pp 793–823Google Scholar
  9. Guo XM, Liu QS (2003) Introduction and guidance of cotton variety. Beijing: Jindun Publishing House, pp 15–17 (in Chinese)Google Scholar
  10. Guo WZ, Cai CP, Wang CB, Zhao L, Wang L, Zhang TZ (2008) A preliminary analysis of genome structure and composition in Gossypium hirsutum. BMC Genomics 9:314PubMedCrossRefGoogle Scholar
  11. Gutiérrez OA, Basu S, Saha S, Jenkins JN, Shoemaker DB, Cheatham C, McCarty JC (2002) Genetic distance of cotton cultivars and germplasm lines based on SSR markers and its association with agronomic and fiber traits of their F2 hybrids. Crop Sci 42:1841–1847CrossRefGoogle Scholar
  12. He DH, Lin ZX, Zhang XL, Nie YC, Guo XP, Zhang YX, Li W (2007) QTL mapping for economic traits based on a dense genetic map of cotton with PCR-based markers using the interspecific cross of Gossypium hirsutum × Gossypium barbadense. Euphytica 153:181–197CrossRefGoogle Scholar
  13. Jenkins JN, McCarty JC, Wu JX, Saha S, Gutiérrez O, Hayes R, Stelly DM (2007) Genetic effects of thirteen Gossypium barbadense L. chromosome substitution lines in topcrosses with Upland cotton cultivars: II. Fiber quality traits. Crop Sci 47:561–571CrossRefGoogle Scholar
  14. Kosambi DD (1944) The estimation of map distances from recombination values. Ann Eugen 12:172–175CrossRefGoogle Scholar
  15. Lacape JM, Nguyen TB, Thibivilliers S, Bojinov B, Courtois B, Cantrell RG, Burr B, Hau B (2003) A combined RFLP–SSRAFLP map of tetraploid cotton based on a Gossypium hirsutum × Gossypium barbadense backcross population. Genome 46:612–626PubMedCrossRefGoogle Scholar
  16. Lefebvre V, Pflieger S, Thabuis A, Caranta C, Blattes A, Chauvet JC, Daubèze AM, Palloix A (2002) Towards the saturation of the pepper linkage map by alignment of three intraspecific maps including known-function genes. Genome 45:839–854PubMedCrossRefGoogle Scholar
  17. Lin Z, He D, Zhang X, Nie Y, Guo X, Feng C, Stewart J McD (2005) Linkage map construction and mapping QTL for cotton fibre quality using SRAP, SSR and RAPD. Plant Breed 124:180–187CrossRefGoogle Scholar
  18. Lin ZX, Zhang YX, Zhang XL, Guo XP (2009) A high-density integrative linkage map for Gossypium hirsutum. Euphytica 166:35–45CrossRefGoogle Scholar
  19. Liu S, Saha S, Stelly DM, Burr B, Cantrell G (2000) Chromosomal assignment of microsatellite loci in cotton. J Hered 91:326–332PubMedCrossRefGoogle Scholar
  20. McCouch SR, Cho YG, Yano PE, Blinstrub M, Morishima H, Kinoshita T (1997) Report on QTL nomenclature. Rice Gene Newslett 14:11–13Google Scholar
  21. Ndungo V, Demol J, Maréchal R (1988) L’amélioration du cotonnier Gossypium hirsutum L. par hybridation interspécifique. Bulletin des Recherches Agronomiques de Gembloux 23:1–92Google Scholar
  22. Nguyen TB, Giband M, Brottier P, Risterucci AM, Lacape JM (2004) Wide coverage of the tetraploid cotton genome using newly developed microsatellite markers. Theor Appl Genet 109:167–175PubMedCrossRefGoogle Scholar
  23. Park YH, Alabady Magdy S, Ulloa M, Sickler B, Wilkins TA, Yu J, Stelly DM, Kohel RJ, El-Shihy OM, Cantrell RG (2005) Genetic mapping of new cotton fiber loci using EST-derived microsatellites in an interspecific recombinant inbred line cotton population. Mol Genet Genomics 274:428–441PubMedCrossRefGoogle Scholar
  24. Percival AE, Wendel JF, Stewart J McD (1999) Taxonomy and germplasm resources. In: Smith CW, Cothren JT (eds) Cotton origin history technology, and production. Wiley, New York, pp 33–63Google Scholar
  25. Qian SY, Huang JQ, Peng YT, Zhou BL, Ying MC, Shen DZ, Liu GL, Hu TX, Xu YJ, Gu LM, Ni WC, Chen S (1992) Studies on the hybrid of G. hirsutum L. and G. anomalum Wawr. & Peyr. and application in breeding (in Chinese). Sci Agric Sinica 25:44–51Google Scholar
  26. Qin HD, Guo WZ, Zhang YM, Zhang TZ (2008) QTL mapping of yield and fiber traits based on a four-way cross population in Gossypium hirsutum L. Theor Appl Genet 117:883–894PubMedCrossRefGoogle Scholar
  27. Reinisch AJ, Dong JM, Brubaker CL, Stelly DM, Wendel JF, Paterson AH (1994) A detailed RFLP map of cotton, Gossypium hirsutum × Gossypium barbadense: chromosome organization and evolution in a disomic polyploid genome. Genetics 138:829–847PubMedGoogle Scholar
  28. Rong JK, Abbey C, Bowers JE, Brubaker CL, Chang CL, Chee PW, Delmonte TA, Ding XL, Garza JJ, Marler BS, Park CH, Pierce GJ, Rainey KM, Rastogi VK, Schulze SR, Trolinder NL, Wendel JF, Wilkins TA, Williams-Coplin TD, Wing RA, Wright RJ, Zhao XP, Zhu LH, Paterson AH (2004) A 3347-locus genetic recombination map of sequence–tagged sites reveals features of genome organization, transmission and evolution of cotton (Gossypium). Genetics 166:389–417PubMedCrossRefGoogle Scholar
  29. Saha MC, Mian R, Zwonitzer JC, Chekhovskiy K, Hopkins AA (2005) An SSR- and AFLP-based genetic linkage map of tall fescue (Festuca arundinacea Schreb.) Theor Appl Genet 110:323–336Google Scholar
  30. Shen XL, Guo WZ, Zhu XF, Yuan YL, Yu JZ, Kohel RJ, Zhang TZ (2005) Molecular mapping of QTL for fiber qualities in three diverse lines in upland cotton using SSR markers. Mol Breed 15:169–181CrossRefGoogle Scholar
  31. Shen X, Zhang T, Guo W, Zhu X, Zhang X (2006) Mapping fiber and yield QTL with main, epistatic, and QTL × environment interaction effects in recombinant inbred lines of upland cotton. Crop Sci 46:61–66CrossRefGoogle Scholar
  32. Shen XL, Guo WZ, Lu QX, Zhu XF, Yuan YL, Zhang TZ (2007) Genetic mapping of quantitative trait loci for fiber quality and yield trait by RIL approach in Upland cotton. Euphytica 155:371–380CrossRefGoogle Scholar
  33. Tang QY, Feng MG (2005) DPS Data processing system. Science Press, BeijingGoogle Scholar
  34. Ulloa M, Meredith WR Jr (2000) Genetic linkage map and QTL analysis of agronomic and fiber quality traits in an intraspecific population. J Cotton Sci 4:161–170Google Scholar
  35. Ulloa M, Meredith WR, Shappley ZW, Kahler AL (2002) RFLP genetic linkage maps from four F2.3 populations and a joinmap of Gossypium hirsutum L. Theor Appl Genet 104:200–208PubMedCrossRefGoogle Scholar
  36. Van Ooijen JW (2004) MapQTL 5.0: Software for the mapping quantitative trait loci in experimental populations. Plant Research International, WageningenGoogle Scholar
  37. Van Ooijen JW, Voorrips RE (2006) JoinMap 4.0, software for the calculation of genetic linkage maps. Plant Research International, WageningenGoogle Scholar
  38. Voorrips RE (2006) MapChart 2.2: Software for the graphical presentation of linkage maps and QTLs. Plant Research International, WageningenGoogle Scholar
  39. Wang K, Song XL, Han ZG, Guo WZ, Yu JZ, Sun J, Pan JJ, Kohel RJ, Zhang TZ (2006) Complete assignment of the chromosomes of Gossypium hirsutum L. by translocation and fluorescence in situ hybridization mapping. Theor Appl Genet 113:73–80PubMedCrossRefGoogle Scholar
  40. Wendel JF, Cronn RC (2003) Polyploidy and the evolutionary history of cotton. Adv Agron 78:139–186CrossRefGoogle Scholar
  41. Wendel JF, Olson PD, Stewart J McD (1989) Genetic diversity, introgression and independent domestication of Old World Cultivated cottons. Am J Bot 76:1795–1806CrossRefGoogle Scholar
  42. Xu S (1996) Mapping quantitative trait loci using four-way crosses. Genet Res 68:175–181CrossRefGoogle Scholar
  43. Zhang ZS, Zhang FX (1998) Improvement of lint yield and fiber quality in upland cotton. Southwest China J Agric Sci 11:230–234 (in Chinese with English abstract)Google Scholar
  44. Zhang ZS, Xiao YH, Luo M, Li XB, Luo XY, Hou L, Li DM, Pei Y (2005) Construction of a genetic linkage map and QTL analysis of fiber-related traits in upland cotton (Gossypium hirsutum L.). Euphytica 144:91–99CrossRefGoogle Scholar
  45. Zhang HB, Li YN, Wang BH, Chee P W (2008) Recent advances in cotton genomics. Int J Plant Genomics 2008:742304Google Scholar
  46. Zhang ZS, Hu MC, Zhang J, Liu DJ, Zheng J, Zhang K, Wang W, Wan Q (2009) Construction of a comprehensive PCR-based marker linkage map and QTL mapping for fiber quality traits in upland cotton (Gossypium hirsutum L.). Mol Breed 24:49–61CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Ke Zhang
    • 1
  • Jian Zhang
    • 1
  • Jing Ma
    • 1
  • Shiyi Tang
    • 1
  • Dajun Liu
    • 1
  • Zhonghua Teng
    • 1
  • Dexin Liu
    • 1
  • Zhengsheng Zhang
    • 1
    Email author
  1. 1.Key Laboratory of Biotechnology & Crop Quality Improvement, Ministry of Agriculture/College of Agronomy & BiotechnologySouthwest UniversityChongqingPeople’s Republic of China

Personalised recommendations