Molecular Breeding

, Volume 29, Issue 1, pp 99–113 | Cite as

Clustered QTL for source leaf size and yield traits in rice (Oryza sativa L.)

  • Peng Wang
  • Guilin Zhou
  • Kehui Cui
  • Zhikang Li
  • Sibin Yu


Improvement of plant type plays an important role in super-high yield breeding in rice (Oryza sativa L.). In the present study, a set of backcross recombinant inbred lines derived from a cross of 9311 and Zhenshan97, both elite indica hybrid parents, were developed to identify quantitative trait loci (QTL) for flag leaf size, panicle and yield traits. Forty-seven QTL for 14 traits were detected in common in the two environmental trials, of which nine genomic regions contained clustered QTL affecting plant type traits and yield traits. Four co-localized QTL on chromosomes 1, 6, 7 and 8 involving QTL for flag leaf size (flag leaf length, width and area) contained the QTL for yield traits such as panicle weight (PW) and secondary branch number (SBN), and in all cases alleles from 9311 increased source leaf size and were associated with increased sink size and yield (SBN and PW). Using a subset of overlapping substitution lines for the QTL region on chromosome 1, the QTL were validated and narrowed into a 990 kbp interval (RM3746–RM10435) with pleiotropic effects on flag leaf size, PW, SBN and spikelet number per panicle. These QTL clusters with large effects on source leaf size and yield-related traits provide good targets for marker-assisted breeding for plant type improvement and high-yield potential in rice.


Oryza sativa L. Backcross recombinant inbred lines Plant type Panicle traits Quantitative trait loci (QTL) 



We are grateful to Dr. Sheng Chen (University of Western Australia) for helpful comments on the manuscript. This work was supported in part by a grant from the National Natural Science Foundation of China, and grants from the Ministry of Science and Technology of China (2006AA10Z151) and the Chinese Ministry of Agriculture (2006-G1).


  1. Andersen JR, Schrag T, Melchinger AE, Zein I, Lubberstedt T (2005) Validation of Dwarf8 polymorphisms associated with flowering time in elite European inbred lines of maize (Zea mays L.). Theor Appl Genet 111:206–217PubMedCrossRefGoogle Scholar
  2. Ashikari M, Sakakibara H, Lin SY, Yamamoto T, Takashi T, Nishimura A, Angeles ER, Qian Q, Kitano H, Matsuoka M (2005) Cytokinin oxidase regulates rice grain production. Science 309:741–745PubMedCrossRefGoogle Scholar
  3. Churchill GA, Doerge RW (1994) Empirical threshold values for quantitative trait mapping. Genetics 138:963–971PubMedGoogle Scholar
  4. Cong B, Liu J, Tanksley SD (2002) Natural alleles at a tomato fruit size quantitative trait locus differ by heterochronic regulatory mutations. Proc Natl Acad Sci USA 99:13606–13611PubMedCrossRefGoogle Scholar
  5. Cui KH, Peng SB, Xing YZ, Yu SB, Xu CG, Zhang Q (2003) Molecular dissection of the genetic relationships of source, sink and transport tissue with yield traits in rice. Theor Appl Genet 106:649–658PubMedGoogle Scholar
  6. Donald CM (1968) The breeding of crop ideotypes. Euphytica 17:385–403CrossRefGoogle Scholar
  7. Dong YJ, Kamiunten H, Ogawa T, Tsuzuki E, Terao H (2004) Mapping of QTLs for leaf developmental behavior in rice (Oryza sativa L.). Euphytica 138:169–175CrossRefGoogle Scholar
  8. Fan CC, Xing YZ, Mao HL, Lu TT, Han B, Xu CG, Li XH, Zhang QF (2006) GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein. Theor Appl Genet 112:1164–1171PubMedCrossRefGoogle Scholar
  9. Horton P (2000) Prospects for crop improvement through the genetic manipulation of photosynthesis: morphological and biochemical aspects of light capture. J Exp Bot 51:475–485PubMedCrossRefGoogle Scholar
  10. Khush GS (1999) Green revolution: preparing for the 21st century. Genome 42:646–655PubMedCrossRefGoogle Scholar
  11. Kobayashi S, Fukuta Y, Morita S, Sato T, Osaki M, Khush GS (2003) Quantitative trait loci effecting flag leaf development in rice (Oryza sativa L.). Breed Sci 53:255–262CrossRefGoogle Scholar
  12. Kobayashi S, Araki E, Osaki M, Khush GS, Fukuta Y (2006) Localization, validation and characterization of plant-type QTLs on chromosomes 4 and 6 in rice (Oryza sativa L.). Field Crops Res 96:106–112CrossRefGoogle Scholar
  13. Lecomte L, Saliba-Colombani V, Gautier A, Gomez-Jimenez MC, Duffé P, Buret M, Causse M (2004) Fine mapping of QTLs of chromosome 2 affecting the fruit architecture and composition of tomato. Mol Breed 13:1–14CrossRefGoogle Scholar
  14. Li ZK, Pinson SRM, Stansel JW, Paterson AH (1998) Genetic dissection of the source-sink relationship affecting fecundity and yield in rice (Oryza sativa L.). Mol Breed 4:419–426CrossRefGoogle Scholar
  15. Li ZK, Paterson AH, Pinson SRM, Stansel JW (1999) RFLP facilitated analysis of tiller and leaf angles in rice (Oryza sativa L.). Euphytica 109:79–84CrossRefGoogle Scholar
  16. Li ZK, Yu SB, Lafitte HR, Huang N, Courtois B, Hittalmani S, Vijayakumar CHM, Liu GF, Wang GC, Shashidhar HE, Zhuang JY, Zheng KL, Singh VP, Sidhu JS, Srivantaneeyakul S, Khush GS (2003) QTL × environment interactions in rice I. Heading date and plant height. Theor Appl Genet 108:141–153PubMedCrossRefGoogle Scholar
  17. Li JM, Thomson M, McCouch SR (2004) Fine mapping of a grain-weight quantitative trait locus in the pericentromeric region of rice chromosome 3. Genetics 168:2187–2195PubMedCrossRefGoogle Scholar
  18. Li C, Zhou A, Sang T (2006) Genetic analysis of rice domestication syndrome with the wild annual species, Oryza nivara. New Phytol 170:185–194PubMedCrossRefGoogle Scholar
  19. Lin HX, Qian HR, Zhuang JY, Lu J, Min SK, Xiong ZM, Huang N, Zheng KL (1996) RFLP mapping of QTLs for yield and related characters in rice (Oryza sativa L.). Theor Appl Genet 92:920–927CrossRefGoogle Scholar
  20. Lin HX, Liang ZW, Sasaki T, Yano M (2003) Fine mapping and characterization of quantitative trait loci Hd4 and Hd5 controlling heading date in rice. Breed Sci 53:51–59CrossRefGoogle Scholar
  21. Lincoln S, Daley M, Lander E (1992) Constructing genetic maps with MAPMAKER/EXP 3.0. Whitehead Institute Technical Report, 3rd edn. Whitehead Institute, CambridgeGoogle Scholar
  22. Lu CG, Zhou JS (2003) A widely commercialized two-line super hybrid rice, Liangyoupeijiu. IRRN 28, 1:20Google Scholar
  23. Ma J, Ma W, Ming DF, Yang SM, Zhu QS (2006) Studies on the characteristics of rice plant with heavy panicle. Sci Agric Sin 39:679–685 (in Chinese with English abstract)Google Scholar
  24. McCouch SR, CGSNL (Committee on Gene Symbolization, Nomenclature, Linkage, Rice Genetics Cooperative) (2008) Gene nomenclature system for rice. Rice 1:72–84CrossRefGoogle Scholar
  25. McCouch SR, Teytelman L, Xu YB, Lobos KB, Clare K, Walton M, Fu BY, Maghirang R, Li ZK, Xing YZ, Zhang QF, Kono I, Yano M, Fjellstrom R, DeClerck G, Schneider D, Cartinhour S, Ware D, Stein L (2002) Development and mapping of 2240 new SSR markers for rice (Oryza sativa L.). DNA Res 9:199–207PubMedCrossRefGoogle Scholar
  26. Mei HW, Luo LJ, Ying CS, Wang YP, Yu XQ, Guo LB, Paterson AH, Li ZK (2003) Gene actions of QTLs affecting several agronomic traits resolved in a recombinant inbred rice population and two testcross populations. Theor Appl Genet 107:89–101PubMedGoogle Scholar
  27. Murray MG, Thompson WF (1980) Rapid isolation of high-molecular-weight plant DNA. Nucleic Acids Res 8:4321PubMedCrossRefGoogle Scholar
  28. Nesbitt TC, Tanksley SD (2001) fw2.2 directly affects the size of developing tomato fruit, with secondary effects on fruit number and photosynthate distribution. Plant Physiol 127:575–583PubMedCrossRefGoogle Scholar
  29. Peng J, Richards DE, Hartley NM, Murphy GP, Devos KM, Flintham JE, Beales J, Fish LJ, Worland AJ, Pelica F, Sudhakar D, Christou P, Snape JW, Gale MD, Harberd NP (1999) ‘Green revolution’ genes encode mutant gibberellin response modulators. Nature 400:256–261PubMedCrossRefGoogle Scholar
  30. Quarrie SA, Quarrie SP, Radosevic R, Rancic D, Kaminska A, Barnes JD, Leverington M, Ceoloni C, Dodig D (2006) Dissecting a wheat QTL for yield present in a range of environments: from the QTL to candidate genes. J Exp Bot 57:2627–2637PubMedCrossRefGoogle Scholar
  31. Redoña ED, Mackill DJ (1998) Quantitative trait locus analysis for rice panicle and grain characteristics. Theor Appl Genet 96:957–963CrossRefGoogle Scholar
  32. Septiningsih EM, Prasetiyono J, Lubis E, Tai TH, Tjubaryat T, Moeljopawiro S, McCouch SR (2003) Identification of quantitative trait loci for yield and yield components in an advanced backcross population derived from the Oryza sativa variety IR64 and the wild relative O. rufipogon. Theor Appl Genet 107:1419–1432PubMedCrossRefGoogle Scholar
  33. Shen YJ, Jiang H, Jin JP, Zhang ZB, Xi B, He YY, Wang G, Wang C, Qian LL, Li X, Yu QB, Liu HJ, Chen DH, Gao JH, Huang H, Shi TL, Yang ZN (2004) Development of genome-wide DNA polymorphism database for map-based cloning of rice genes. Plant Physiol 135:1198–1205PubMedCrossRefGoogle Scholar
  34. StatSoft (1999) Statistica. StatSoft Incorporated, TulsaGoogle Scholar
  35. Takano-Kai N, Jiang H, Kubo T, Sweeney M, Matsumoto T, Kanamori H, Padhukasahasram B, Bustamante C, Yoshimura A, Doi K, McCouch S (2009) Evolutionary history of GS3, a gene conferring grain length in rice. Genetics 182:1323–1334PubMedCrossRefGoogle Scholar
  36. Temnykh S, Park WD, Ayres NM, Cartinhour S, Hauck N, Lipovich L, Cho YG, Ishii T, McCouch SR (2000) Mapping and genome organization of microsatellite sequences in rice (Oryza sativa L.). Theor Appl Genet 100:697–712CrossRefGoogle Scholar
  37. Thomson MJ, Edwards JD, Septiningsih EM, Harrington SE, McCouch SR (2006) Substitution mapping of dth1.1, a flowering-time quantitative trait locus (QTL) associated with transgressive variation in rice, reveals multiple sub-QTL. Genetics 172:2501–2514PubMedCrossRefGoogle Scholar
  38. Wang YH, Li JY (2005) The plant architecture of rice. Plant Mol Biol 59:75–84PubMedCrossRefGoogle Scholar
  39. Wang SC, Zeng ZB (2004) Windows QTL Cartographer 2.0. Department of Statistics, North Carolina State University, Raleigh, NC, 2001-2004.
  40. Wu X (2009) Prospects of developing hybrid rice with super high yield. Agron J 101:688–695CrossRefGoogle Scholar
  41. Wu C, Trieu A, Radhakrishnan P, Kwok SF, Harris S, Zhang K, Wang J, Wan J, Zhai H, Takatsuto S, Matsumoto S, Fujioka S, Feldmann KA, Pennella RI (2008) Brassinosteroids regulate grain filling in rice. Plant Cell 20:2130–2145PubMedCrossRefGoogle Scholar
  42. Xie X, Jin F, Song MH, Suh JP, Hwang HG, Kim YG, McCouch SR, Ahn SN (2008) Fine mapping of a yield-enhancing QTL cluster associated with transgressive variation in an Oryza sativa × O. rufipogon cross. Theor Appl Genet 116:613–622PubMedCrossRefGoogle Scholar
  43. Xing YZ, Tang WJ, Xue WY, Xu CG, Zhang Q (2008) Fine mapping of a major quantitative trait loci, qSSP7, controlling the number of spikelets per panicle as a single Mendelian factor in rice. Theor Appl Genet 116:789–796PubMedCrossRefGoogle Scholar
  44. Xue W, Xing Y, Weng X, Zhao Y, Tang W, Wang L, Zhou H, Yu S, Xu C, Li X, Zhang Q (2008) Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice. Nat Genet 40:761–767PubMedCrossRefGoogle Scholar
  45. Yamamoto T, Yonemaru J, Yano M (2009) Towards the understanding of complex traits in rice: substantially or superficially? DNA Res 1–14Google Scholar
  46. Yang J, Hu C, Hu H, Yu R, Xia Z, Zhu J (2008) QTLNetwork: mapping and visualizing genetic architecture of complex traits in experimental populations. Bioinformatics 24:721–723PubMedCrossRefGoogle Scholar
  47. Yu SB, Li JX, Xu CG, Tan YF, Li XH, Zhang Q (2002) Identification of quantitative trait loci and epistatic interactions for plant height and heading date in rice. Theor Appl Genet 104:619–625PubMedCrossRefGoogle Scholar
  48. Yuan LP (1997) Hybrid rice breeding for super high yield. Hybrid Rice 12:1–6 (in Chinese)Google Scholar
  49. Yue B, Xue WY, Luo LJ, Xing YZ (2006) QTL analysis for flag characteristics and their relationships with yield and yield traits in rice. Acta Genet Sin 33:824–832PubMedCrossRefGoogle Scholar
  50. Zhang YS, Luo LJ, Xu CG, Zhang Q, Xing YZ (2006) Quantitative trait loci for panicle, heading date and plant height co-segregating in trait-performance derived near-isogenic lines of rice (Oryza sativa L.). Theor Appl Genet 113:361–368PubMedCrossRefGoogle Scholar
  51. Zhuang JY, Lin HX, Lu J, Qian HR, Hittalmani S, Huang N, Zheng KL (1997) Analysis of QTL by environment interaction for yield components and plant height in rice. Theor Appl Genet 95:799–808CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Peng Wang
    • 1
  • Guilin Zhou
    • 1
  • Kehui Cui
    • 1
  • Zhikang Li
    • 2
    • 3
  • Sibin Yu
    • 1
  1. 1.National Key Laboratory of Crop Genetic Improvement, and The College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
  2. 2.The College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
  3. 3.National Key Facility for Crop Gene Resources & Genetic ImprovementChinese Academy of Agricultural SciencesBeijingChina

Personalised recommendations