Molecular Breeding

, Volume 28, Issue 4, pp 585–596 | Cite as

Development and genetic mapping of microsatellite markers from whole genome shotgun sequences in Brassica oleracea

  • Haitao Li
  • Xun Chen
  • Yuan Yang
  • Jinsong Xu
  • Jianxun Gu
  • Jie Fu
  • Xiaoju Qian
  • Shunchang Zhang
  • Jiangsheng Wu
  • Kede Liu
Original Paper


The availability of whole genome shotgun sequences (WGSs) in Brassica oleracea provides an unprecedented opportunity for development of microsatellite or simple sequence repeat (SSR) markers for genome analysis and genetic improvement in Brassica species. In this study, a total of 56,465 non-redundant SSRs were identified from the WGSs in B. oleracea, with dinucleotide repeats being the most abundant, followed by tri-, tetra- and pentanucleotide repeats. From these, 1,398 new SSR markers (designated as BoGMS) with repeat length ≥25 bp were developed and used to survey polymorphisms with a panel of six rapeseed varieties, which is the largest number of SSR markers developed for the C genome in a single study. Of these SSR markers, 752 (69.5%) showed polymorphism among the six varieties. Of these, 266 markers that showed clear scorable polymorphisms between B. napus varieties No. 2127 and ZY821 were integrated into an existing B. napus genetic linkage map. These new markers are preferentially distributed on the linkage groups in the C genome, and significantly increased the number of SSR markers in the C genome. These SSR markers will be very useful for gene mapping and marker-assisted selection of important agronomic traits in Brassica species.


Brassica oleracea Whole genome shotgun sequences Microsatellites Simple sequence repeats Brassica napus Linkage map 

Supplementary material

11032_2010_9509_MOESM1_ESM.xls (412 kb)
Supplementary material 1 (XLS 412 kb)


  1. Ayele M, Haas B, Kumar N, Wu H, Xiao Y, Van Aken S, Utterback T, Wortman J, White O, Town C (2005) Whole genome shotgun sequencing of Brassica oleracea and its application to gene discovery and annotation in Arabidopsis. Genome Res 15:487–495PubMedCrossRefGoogle Scholar
  2. Batley J, Hopkins C, Cogan N, Hand M, Jewell E, Kaur J, Kaur S, Li X, Ling A, Love C (2007) Identification and characterization of simple sequence repeat markers from Brassica napus expressed sequences. Mol Ecol Notes 7:886–889CrossRefGoogle Scholar
  3. Breseghello F, Sorrells M (2006) Association mapping of kernel size and milling quality in wheat (Triticum aestivum L.) cultivars. Genetics 172:1165–1177PubMedCrossRefGoogle Scholar
  4. Chen C, Yu Q, Hou S, Li Y, Eustice M, Skelton RL, Veatch O, Herdes RE, Diebold L, Saw J, Feng Y, Qian W, Bynum L, Wang L, Moore PH, Paull RE, Alam M, Ming R (2007a) Construction of a sequence-tagged high-density genetic map of papaya for comparative structural and evolutionary genomics in Brassicales. Genetics 177:2481–2491PubMedCrossRefGoogle Scholar
  5. Chen W, Zhang Y, Liu X, Chen B, Tu J, Tingdong F (2007b) Detection of QTL for six yield-related traits in oilseed rape (Brassica napus) using DH and immortalized F2 populations. Theor Appl Genet 115:849–858PubMedCrossRefGoogle Scholar
  6. Chen S, Nelson M, Ghamkhar K, Fu T, Cowling W (2008) Divergent patterns of allelic diversity from similar origins: the case of oilseed rape (Brassica napus L.) in China and Australia. Genome 51:1–10PubMedCrossRefGoogle Scholar
  7. Chen S, Zou J, Cowling W, Meng J (2010) Allelic diversity in a novel gene pool of canola-quality Brassica napus enriched with alleles from B. rapa and B. carinata. Crop Pasture Sci 61:483–492CrossRefGoogle Scholar
  8. Cheng X, Xu J, Xia S, Gu J, Yang Y, Fu J, Qian X, Zhang S, Wu J, Liu K (2009) Development and genetic mapping of microsatellite markers from genome survey sequences in Brassica napus. Theor Appl Genet 118:1121–1131PubMedCrossRefGoogle Scholar
  9. Choi S, Teakle G, Plaha P, Kim J, Allender C, Beynon E, Piao Z, Soengas P, Han T, King G (2007) The reference genetic linkage map for the multinational Brassica rapa genome sequencing project. Theor Appl Genet 115:777–792PubMedCrossRefGoogle Scholar
  10. Delourme R, Falentin C, Huteau V, Clouet V, Horvais R, Gandon B, Specel S, Hanneton L, Dheu JE, Deschamps M, Margale E, Vincourt P, Renard M (2006) Genetic control of oil content in oilseed rape (Brassica napus L.). Theor Appl Genet 113:1331–1345PubMedCrossRefGoogle Scholar
  11. Doyle J, Doyle J (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19:11–15Google Scholar
  12. Fahey J, Florens HE (1995) The role of crucifers in cancer chemoprotection. In: Talalay P, Gustine DL (eds) Phytochemicals and health. American Society of Plant Physiologists, Rockville, MD, pp 87–93Google Scholar
  13. Gupta PK, Varshney RK (2000) The development and use of microsatellite markers for genetic analysis and plant breeding with emphasis on bread wheat. Euphytica 113:163–185CrossRefGoogle Scholar
  14. Hasan M, Seyis F, Badani A, Pons-Kühnemann J, Friedt W, Lühs W, Snowdon R (2006) Analysis of genetic diversity in the Brassica napus L. gene pool using SSR markers. Genet Resour Crop Evol 53:793–802CrossRefGoogle Scholar
  15. Hong C, Plaha P, Koo D, Yang T, Choi S, Lee Y, Uhm T, Bang J, Edwards D, Bancroft I (2006) A survey of the Brassica rapa genome by BAC-end sequence analysis and comparison with Arabidopsis thaliana. Mol Cells 22:300–307PubMedGoogle Scholar
  16. Hong C, Piao Z, Kang T, Batley J, Yang T, Hur Y, Bhak J, Park B, Edwards D, Lim Y (2007) Genomic distribution of simple sequence repeats in Brassica rapa. Mol Cells 23:349–356PubMedGoogle Scholar
  17. Hopkins CJ, Cogan NOI, Hand M, Jewell E, Kaur J, Li X, Lim GAC, Ling AE, Love C, Mountford H, Todorovic M, Vardy M, Spangenberg GC, Edwards D, Batley J (2007) Sixteen new simple sequence repeat markers from Brassica juncea expressed sequences and their cross-species amplification. Mol Ecol Notes 7:697–700CrossRefGoogle Scholar
  18. Iniguez-Luy F, Voort A, Osborn T (2008) Development of a set of public SSR markers derived from genomic sequence of a rapid cycling Brassica oleracea L. genotype. Theor Appl Genet 117:977–985PubMedCrossRefGoogle Scholar
  19. Iniguez-Luy F, Lukens L, Farnham M, Amasino R, Osborn T (2009) Development of public immortal mapping populations, molecular markers and linkage maps for rapid cycling Brassica rapa and B. oleracea. Theor Appl Genet 120:31–43PubMedCrossRefGoogle Scholar
  20. Johnston J, Pepper A, Hall A, Chen Z, Hodnett G, Drabek J, Lopez R, Price H (2005) Evolution of genome size in Brassicaceae. Ann Bot 95:229–235PubMedCrossRefGoogle Scholar
  21. Katari M, Balija V, Wilson R, Martienssen R, McCombie W (2005) Comparing low coverage random shotgun sequence data from Brassica oleracea and Oryza sativa genome sequence for their ability to add to the annotation of Arabidopsis thaliana. Genome Res 15:496–504PubMedCrossRefGoogle Scholar
  22. Katti M, Ranjekar P, Gupta V (2001) Differential distribution of simple sequence repeats in eukaryotic genome sequences. Mol Biol Evol 18:1161–1167PubMedGoogle Scholar
  23. Kim H, Choi S, Bae J, Hong C, Lee S, Hossain M, Van Nguyen D, Jin M, Park B, Bang J (2009) Sequenced BAC anchored reference genetic map that reconciles the ten individual chromosomes of Brassica rapa. BMC Genomics 10:432PubMedCrossRefGoogle Scholar
  24. Kosambi DD (1944) The estimation of map distance from recombination values. Ann Eugen 12:172–175CrossRefGoogle Scholar
  25. Kresovich S, Szewc-McFadden A, Bliek S, McFerson J (1995) Abundance and characterization of simple-sequence repeats (SSRs) isolated from a size-fractionated genomic library of Brassica napus L. (rapeseed). Theor Appl Genet 91:206–211CrossRefGoogle Scholar
  26. Lawson M, Zhang L (2006) Distinct patterns of SSR distribution in the Arabidopsis thaliana and rice genomes. Genome Biol 7:R14PubMedCrossRefGoogle Scholar
  27. Lim Y, Plaha P, Choi S, Uhm T, Hong C, Bang J, Hur Y (2006) Toward unraveling the structure of Brassica rapa genome. Physiol Plant 126:585–591CrossRefGoogle Scholar
  28. Ling A, Kaur J, Burgess B, Hand M, Hopkins C, Li X, Love C, Vardy M, Walkiewicz M, Spangenberg G (2007) Characterization of simple sequence repeat markers derived in silico from Brassica rapa bacterial artificial chromosome sequences and their application in Brassica napus. Mol Ecol Notes 7:273–277CrossRefGoogle Scholar
  29. Liu HL (1983) Studies on the breeding of yellow-seeded Brassica napus. Proceedings of the 6th International Rapeseed Congress, Paris, France, pp 637–641Google Scholar
  30. Lombard V, Delourme R (2001) A consensus linkage map for rapeseed (Brassica napus L.): construction and integration of three individual maps from DH populations. Theor Appl Genet 103:491–507CrossRefGoogle Scholar
  31. Long Y, Shi J, Qiu D, Li R, Zhang C, Wang J, Hou J, Zhao J, Shi L, Park B-S, Choi SR, Lim YP, Meng J (2007) Flowering time quantitative trait loci analysis of oilseed Brassica in multiple environments and genomewide alignment with Arabidopsis. Genetics 177:2433–2444PubMedGoogle Scholar
  32. Lowe A, Moule C, Trick M, Edwards K (2004) Efficient large-scale development of microsatellites for marker and mapping applications in Brassica crop species. Theor Appl Genet 108:1103–1112PubMedCrossRefGoogle Scholar
  33. McCouch SR, Teytelman L, Xu YB, Lobos KB, Clare K, Walton M, Fu BY, Maghirang R, Li ZK, Xing YZ, Zhang QF, Kono I, Yano M, Fjellstrom R, DeClerck G, Schneider D, Cartinhour S, Ware D, Stein L (2002) Development and mapping of 2240 new SSR markers for rice (Oryza sativa L.). DNA Res 9:199–207PubMedCrossRefGoogle Scholar
  34. Mitchell S, Kresovich S, Jester C, Hernandez C, Szewc-McFadden A (1997) Application of multiplex PCR and flourescence-based, semi-automated allele sizing technology for genotyping plant genetic resources. Crop Sci 37:617–624CrossRefGoogle Scholar
  35. Padmaja KL, Arumugam N, Gupta V, Mukhopadhyay A, Sodhi YS, Pental D, Pradhan AK (2005) Mapping and tagging of seed coat colour and the identification of microsatellite markers for marker-assisted manipulation of the trait in Brassica juncea. Theor Appl Genet 111:8–14PubMedCrossRefGoogle Scholar
  36. Piquemal J, Cinquin E, Couton F, Rondeau C, Seignoret E, Doucet I, Perret D, Villeger M, Vincourt P, Blanchard P (2005) Construction of an oilseed rape (Brassica napus L.) genetic map with SSR markers. Theor Appl Genet 111:1514–1523PubMedCrossRefGoogle Scholar
  37. Plieske J, Struss D (2001) Microsatellite markers for genome analysis in Brassica. I. Development in Brassica napus and abundance in Brassicaceae species. Theor Appl Genet 102:689–694CrossRefGoogle Scholar
  38. Qiu D, Morgan C, Shi J, Long Y, Liu J, Li R, Zhuang X, Wang Y, Tan X, Dietrich E, Weihmann T, Everett C, Vanstraelen S, Beckett P, Fraser F, Trick M, Barnes S, Wilmer J, Schmidt R, Li J, Li D, Meng J, Bancroft I (2006) A comparative linkage map of oilseed rape and its use for QTL analysis of seed oil and erucic acid content. Theor Appl Genet 114:67–80PubMedCrossRefGoogle Scholar
  39. Rozen S, Skaletsky H (2000) Primer3 on the WWW for general users and for biologist programmers. Methods Mol Biol 132:365–386PubMedGoogle Scholar
  40. Saito M, Kubo N, Matsumoto S, Suwabe K, Tsukada M, Hirai M (2006) Fine mapping of the clubroot resistance gene, Crr3, in Brassica rapa. Theor Appl Genet 114:81–91PubMedCrossRefGoogle Scholar
  41. Shoemaker RC, Grant D, Olson T, Warren WC, Wing R, Yu Y, Kim H, Cregan P, Joseph B, Futrell-Griggs M, Will N, Davito J, Walker J, Wallis J, Kremitski C, Scheer D, Clifton SW, Graves T, Nguyen H, Wu X, Luo M, Dvorak J, Nelson R, Cannon S, Tomkins J, Schmutz J, Stacey G, Jackson S (2008) Microsatellite discovery from BAC end sequences and genetic mapping to anchor the soybean physical and genetic maps. Genome 51:294–302PubMedCrossRefGoogle Scholar
  42. Shultz J, Kazi S, Bashir R, Afzal J, Lightfoot D (2007) The development of BAC-end sequence-based microsatellite markers and placement in the physical and genetic maps of soybean. Theor Appl Genet 114:1081–1090PubMedCrossRefGoogle Scholar
  43. Snowdon R, Lühs W, Friedt W (2006) Oilseed rape. In: Kole C (ed) Genome mapping and molecular breeding, vol 2: oilseeds. Springer Verlag, Heidelberg, pp 55–114Google Scholar
  44. Song Q, Shi J, Singh S, Fickus E, Costa J, Lewis J, Gill B, Ward R, Cregan P (2005) Development and mapping of microsatellite (SSR) markers in wheat. Theor Appl Genet 110:550–560PubMedCrossRefGoogle Scholar
  45. Suwabe K, Iketani H, Nunome T, Kage T, Hirai M (2002) Isolation and characterization of microsatellites in Brassica rapa L. Theor Appl Genet 104:1092–1098PubMedCrossRefGoogle Scholar
  46. Suwabe K, Tsukazaki H, Iketani H, Hatakeyama K, Kondo M, Fujimura M, Nunome T, Fukuoka H, Hirai M, Matsumoto S (2006) Simple sequence repeat-based comparative genomics between Brassica rapa and Arabidopsis thaliana: the genetic origin of clubroot resistance. Genetics 173:309–319PubMedCrossRefGoogle Scholar
  47. Suwabe K, Morgan C, Bancroft I (2008) Integration of Brassica A genome genetic linkage map between Brassica napus and B. rapa. Genome 51:169–176PubMedCrossRefGoogle Scholar
  48. Szewc-McFadden A, Kresovich S, Bliek S, Mitchell S, McFerson J (1996) Identification of polymorphic, conserved simple sequence repeats (SSRs) in cultivated Brassica species. Theor Appl Genet 93:534–538CrossRefGoogle Scholar
  49. Temnykh S, DeClerck G, Lukashova A, Lipovich L, Cartinhour S, McCouch S (2001) Computational and experimental analysis of microsatellites in rice (Oryza sativa L.): frequency, length variation, transposon associations, and genetic marker potential. Genome Res 11:1441–1452PubMedCrossRefGoogle Scholar
  50. U N (1935) Genome analysis in Brassica with special reference to the experimental formation of B. napus and peculiar mode of fertilization. Jpn J Bot 7:389–452Google Scholar
  51. Uzunova M, Ecke W (1999) Abundance, polymorphism and genetic mapping of microsatellites in oilseed rape (Brassica napus L.). Plant Breed 118:323–326CrossRefGoogle Scholar
  52. Van Ooijen JW, Voorrips RE (2001) JoinMap®3.0. Software for the calculation of genetic linkage maps. Plant Research International, WageningenGoogle Scholar
  53. Varghese J, Rudolph B, Uzunova M, Ecke W (2000) Use of 5′-anchored primers for the enhanced recovery of specific microsatellite markers in Brassica napus L. Theor Appl Genet 101:115–119CrossRefGoogle Scholar
  54. Xiao S, Xu J, Li Y, Zhang L, Shi S, Wu J, Liu K (2007) Generation and mapping of SCAR and CAPS markers linked to the seed coat color gene in Brassica napus using a genome-walking technique. Genome 50:611–618PubMedCrossRefGoogle Scholar
  55. Yang T, Kim J, Lim K, Kwon S, Kim J, Jin M, Park J, Lim M, Kim H, Kim S (2005) The Korea Brassica genome project: a glimpse of the Brassica genome based on comparative genome analysis with Arabidopsis. Comp Funct Genom 6:138–146CrossRefGoogle Scholar
  56. Yi G, Lee J, Lee S, Choi D, Kim B (2006) Exploitation of pepper EST–SSRs and an SSR-based linkage map. Theor Appl Genet 114:113–130PubMedCrossRefGoogle Scholar
  57. Zhang X, Wessler S (2004) Genome-wide comparative analysis of the transposable elements in the related species Arabidopsis thaliana and Brassica oleracea. Proc Natl Acad Sci USA 101:5589–5594PubMedCrossRefGoogle Scholar
  58. Zhang T, Yuan Y, Yu J, Guo W, Kohel R (2003) Molecular tagging of a major QTL for fiber strength in Upland cotton and its marker-assisted selection. Theor Appl Genet 106:262–268PubMedGoogle Scholar
  59. Zhao JY, Becker HC, Zhang DQ, Zhang YF, Ecke W (2006) Conditional QTL mapping of oil content in rapeseed with respect to protein content and traits related to plant development and grain yield. Theor Appl Genet 113:33–38PubMedCrossRefGoogle Scholar
  60. Zhou W, Kolb F, Bai G, Domier L, Boze L, Smith N (2003) Validation of a major QTL for scab resistance with SSR markers and use of marker-assisted selection in wheat. Plant Breed 122:40–46CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Haitao Li
    • 1
  • Xun Chen
    • 1
  • Yuan Yang
    • 1
  • Jinsong Xu
    • 1
  • Jianxun Gu
    • 1
  • Jie Fu
    • 1
  • Xiaoju Qian
    • 1
  • Shunchang Zhang
    • 1
  • Jiangsheng Wu
    • 1
  • Kede Liu
    • 1
  1. 1.National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan)Huazhong Agricultural UniversityWuhanChina

Personalised recommendations