Molecular Breeding

, Volume 28, Issue 4, pp 511–526

Characterization of a global germplasm collection and its potential utilization for analysis of complex quantitative traits in maize

  • Xiaohong Yang
  • Shibin Gao
  • Shutu Xu
  • Zuxin Zhang
  • Boddupalli M. Prasanna
  • Lin Li
  • Jiansheng Li
  • Jianbing Yan
Article

Abstract

Association mapping is a powerful approach for exploring the molecular basis of phenotypic variations in plants. A maize (Zea mays L.) association mapping panel including 527 inbred lines with tropical, subtropical and temperate backgrounds, representing the global maize diversity, was genotyped using 1,536 single nucleotide polymorphisms (SNPs). In total, 926 SNPs with minor allele frequencies of ≥0.1 were used to estimate the pattern of genetic diversity and relatedness among individuals. The analysis revealed broad phenotypic diversity and complex genetic relatedness in the maize panel. Two different Bayesian approaches identified three specific subpopulations, which were then reconfirmed by principal component analysis (PCA) and tree-based analyses. Marker–trait associations were performed to assess the suitability of different models for false-positive correction by population structure (Q matrix/PCA) and familial kinship (K matrix) alone or in combination in this panel. The K, Q + K and PCA + K models could reduce the false positives, and the Q + K model performed slightly better for flowering time, ear height and ear diameter. Our findings suggest that this maize panel is suitable for association mapping in order to understand the relationship between genotypic and phenotypic variations for agriculturally complex quantitative traits using optimal statistical methods.

Keywords

Maize Genetic diversity Genetic relatedness Association mapping Phenotypic variation 

Supplementary material

11032_2010_9500_MOESM1_ESM.xls (95 kb)
Supplementary material 1 (XLS 95 kb)
11032_2010_9500_MOESM2_ESM.xls (76 kb)
Supplementary material 2 (XLS 76 kb)
11032_2010_9500_MOESM3_ESM.doc (40 kb)
Supplementary material 3 (DOC 40 kb)
11032_2010_9500_MOESM4_ESM.doc (82 kb)
Supplementary material 4 (DOC 82 kb)
11032_2010_9500_MOESM5_ESM.doc (70 kb)
Supplementary material 5 (DOC 70 kb)
11032_2010_9500_MOESM6_ESM.doc (110 kb)
Supplementary material 6 (DOC 109 kb)
11032_2010_9500_MOESM7_ESM.doc (37 kb)
Supplementary material 7 (DOC 37 kb)

References

  1. Andersen JR, Lübberstedt T (2003) Functional markers in plants. Trends Plant Sci 8:554–560PubMedCrossRefGoogle Scholar
  2. Andersen JR, Zein I, Wenzel G, Krützfeldt B, Eder J, Ouzunova M, Lübberstedt T (2007) High levels of linkage disequilibrium and associations with forage quality at a Phenylalanine Ammonia-Lyase locus in European maize (Zea mays L.) inbreds. Theor Appl Genet 114:307–319PubMedCrossRefGoogle Scholar
  3. Belo A, Zheng P, Luck S, Shen B, Meyer DJ, Li B, Tingey S, Rafalski A (2008) Whole genome scan detects an allelic variant of fad2 associated with increased oleic acid levels in maize. Mol Genet Genomics 279:1–10PubMedCrossRefGoogle Scholar
  4. Buckler ES, Stevens NM (2005) Maize Origins, Domestication, and selection. In: Motley TJ, Zerega N, Cross H (eds) Darwin’s Harvest. Columbia University Press, New York, pp 67–90Google Scholar
  5. Buckler ES, Holland JB, Bradbury PJ, Acharya CB, Brown PJ, Browne C, Ersoz E, Flint-Garcia S, Garcia A, Glaubitz JC, Goodman MM, Harjes C, Guill K, Kroon DE, Larsson S, Lepak NK, Li HH, Mitchell SE, Pressoir G, Peiffer JA, Rosas MO, Rocheford TR, Romay MC, Romero S, Salvo S, Villeda HS, da Silva HS, Sun Q, Tian F, Upadyayula N, Ware D, Yates H, Yu JM, Zhang ZW, Kresovich S, McMullen MD (2009) The genetic architecture of maize flowering time. Science 325:714–718PubMedCrossRefGoogle Scholar
  6. Camus-Kulandaivelu L, Veyrieras JB, Madur D, Combes V, Fourmann M, Barraud S, Dubreuil P, Gouesnard B, Manicacci D, Charcosset A (2006) Maize adaptation to temperate climate: relationship between population structure and polymorphism in the Dwarf8 gene. Genetics 172:2449–2463PubMedCrossRefGoogle Scholar
  7. Devlin B, Roeder K (1999) Genomic control for association studies. Biometrics 55:997–1004PubMedCrossRefGoogle Scholar
  8. Dhliwayo T, Pixley K, Menkir A, Warburton M (2009) Combining ability, genetic distances, and heterosis among elite CIMMYT and IITA tropical maize inbred lines. Crop Sci 49:1201–1210CrossRefGoogle Scholar
  9. Ducrocq S, Giauffret C, Madur D, Combes V, Dumas F, Jouanne S, Coubriche D, Jamin P, Moreau L, Charcosset A (2009) Fine mapping and haplotype structure analysis of a major flowering time quantitative trait locus on maize chromosome 10. Genetics 183:1555–1563PubMedCrossRefGoogle Scholar
  10. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620PubMedCrossRefGoogle Scholar
  11. Excoffier L, Smouse PE, Quattro JM (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131:479–491PubMedGoogle Scholar
  12. Excoffier L, Laval G, Schneider S (2005) Arlequin ver. 3.0: an integrated software package for population genetics data analysis. Evol Bioinform Online 1:47–50Google Scholar
  13. Falush D, Stephens M, Pritchard JK (2003) Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164:1567–1587PubMedGoogle Scholar
  14. Fan JB, Gunderson KL, Bibikova M, Yeakley JM, Chen J, Garcia EW, Lebruska LL, Laurent M, Shen R, Barker D (2006) Illumina universal bead arrays. Meth Enzymol 410:57–73PubMedCrossRefGoogle Scholar
  15. Flint-Garcia SA, Thuillet AC, Yu JM, Pressoir G, Romero SM, Mitchell SE, Doebley J, Kresovich S, Goodman MM, Buckler ES (2005) Maize association population: a high-resolution platform for quantitative trait locus dissection. Plant J 44:1054–1064PubMedCrossRefGoogle Scholar
  16. Gao H, Williamson S, Bustamante CD (2007) A Markov Chain Monte Carlo approach for joint inference of population structure and inbreeding rates from multilocus genotype data. Genetics 176:1635–1651PubMedCrossRefGoogle Scholar
  17. Gore MA, Chia JM, Elshire R, Sun Q, Ersoz E, Hurwitz BL, Peiffer JA, McMullen MD, Grills GS, Ross-Ibarra J, Ware DH, Buckler ES (2009) A first-generation haplotype map of maize. Science 326:1115–1117PubMedCrossRefGoogle Scholar
  18. Gupta PK, Rustgi S, Mir RR (2008) Array-based high-throughput DNA markers for crop improvement. Heredity 101:5–18PubMedCrossRefGoogle Scholar
  19. Hamblin MT, Warburton ML, Buckler ES (2007) Empirical comparison of simple sequence repeats and single nucleotide polymorphisms in assessment of maize diversity and relatedness. PLoS ONE 12:e1367CrossRefGoogle Scholar
  20. Hardy OJ, Vekemans X (2002) Spagedi: a versatile computer program to analyse spatial genetic structure at the individual or population levels. Mol Ecol Notes 2:618–620CrossRefGoogle Scholar
  21. Harjes CE, Rocheford TR, Bai L, Brutnell TP, Kandianis CB, Sowinski SG, Stapleton AE, Vallabhaneni R, Williams M, Wurtzel ET, Yan JB, Buckler ES (2008) Natural genetic variation in lycopene epsilon cyclase tapped for maize biofortification. Science 319:330–333PubMedCrossRefGoogle Scholar
  22. Inghelandt DV, Melchinger AE, Lebreton CL, Stich B (2010) Population structure and genetic diversity in a commercial maize breeding program assessed with SSR and SNP markers. Theor Appl Genet 120:1289–1299PubMedCrossRefGoogle Scholar
  23. Jakobsson M, Rosenberg NA (2007) CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 21:1801–1806CrossRefGoogle Scholar
  24. Kang HM, Zaitlen NA, Wade CM, Kirby A, Heckerman D, Daly MJ, Eskin E (2008) Efficient control of population structure in model organism association mapping. Genetics 178:1709–1723PubMedCrossRefGoogle Scholar
  25. Laurie CC, Chasalow SD, LeDeaux JR, McCarroll R, Bush D, Hauge B, Lai CQ, Clark D, Rocheford TR, Dudley JW (2004) The genetic architecture of response to long-term artificial selection for oil concentration in the maize kernel. Genetics 168:2141–2155PubMedCrossRefGoogle Scholar
  26. Li Q, Li L, Yang XH, Warburton ML, Bai GH, Dai JR, Li JS, Yan JB (2010a) Relationship, evolutionary fate and function of two maize orthologous genes of rice GW2 associated with kernel size and weight. BMC Plant Biol 10:143PubMedCrossRefGoogle Scholar
  27. Li Q, Yang XH, Bai GH, Warburton ML, Mahuku G, Gore M, Dai JR, Li JS, Yan JB (2010b) Characterization of a putative GS3 ortholog involved in maize kernel development. Theor Appl Genet 120:753–763PubMedCrossRefGoogle Scholar
  28. Liu KJ, Muse SV (2005) PowerMarker: an integrated analysis environment for genetic marker analysis. Bioinformatics 21:2128–2129PubMedCrossRefGoogle Scholar
  29. Liu KJ, Goodman M, Muse S, Smith JS, Buckler ES, Doebley J (2003) Genetic structure and diversity among maize inbred lines as inferred from DNA microsatellites. Genetics 165:2117–2128PubMedGoogle Scholar
  30. Long AD, Langley CH (1999) The power of association studies to detect the contribution of candidate genetic loci to variation in complex traits. Genome Res 9:720–731PubMedGoogle Scholar
  31. Lu YL, Yan JB, Guimarǎes GT, Taba S, Hao ZF, Gao SB, Chen SJ, Li JS, Zhang SH, Vivek BS, Magorokosho C, Mugo S, Makumbi D, Parentoni SN, Shah T, Rong TZ, Crouch JH, Xu YB (2009) Molecular characterization of global maize breeding germplasm based on genome-wide single nucleotide polymorphisms. Theor Appl Genet 120:93–115PubMedCrossRefGoogle Scholar
  32. Mackay TFC, Stone EA, Ayroles JF (2009) The genetics of quantitative traits: challenges and prospects. Nat Rev Genet 10:565–577PubMedCrossRefGoogle Scholar
  33. McMullen MD, Kresovich S, Villeda HS, Bradbury P, Li HH, Sun Q, Flint-Garcia S, Thornsberry J, Acharya C, Bottoms C, Brown P, Browne C, Eller M, Guill K, Harjes C, Kroon D, Lepak N, Mitchell SE, Peterson B, Pressoir G, Romero S, Rosas MO, Salvo S, Yates H, Hanson M, Jones E, Smith S, Glaubitz JC, Goodman M, Ware D, Holland JB, Buckler ES (2009) Genetic properties of the maize nested association mapping population. Science 325:737–740PubMedCrossRefGoogle Scholar
  34. Murray MG, Thompson WF (1980) Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res 8:4321–4325PubMedCrossRefGoogle Scholar
  35. Myles S, Peiffer J, Brown PJ, Ersoz ES, Zhang ZW, Costich DE, Buckler ED (2009) Association mapping: critical considerations shift from genotyping to experimental design. Plant Cell 21:2194–2202PubMedCrossRefGoogle Scholar
  36. Nei M (1972) Genetic distance between populations. Am Nat 106:283–292CrossRefGoogle Scholar
  37. Ng SB, Turner EH, Robertson PD, Flygare SD, Bigham AW, Lee C, Shaffer T, Wong M, Bhattacharjee A, Eichler EE, Bamshad M, Nickerson DA, Shendure J (2009) Targeted capture and massively parallel sequencing of 12 human exomes. Nature 461:272–276PubMedCrossRefGoogle Scholar
  38. Patterson N, Price AL, Reich D (2006) Population structure and eigenanalysis. PLoS Genet 2:e190PubMedCrossRefGoogle Scholar
  39. Poole RW (1974) An introduction to quantitative ecology. McGraw-Hill, NY, USA, p 532Google Scholar
  40. Pressoir G, Brown PJ, Zhu WY, Upadyayula N, Rocheford T, Buckler ES, Kresovich S (2009) Natural variation in maize architecture is mediated by allelic differences at the PINOID co-ortholog barren inflorescence2. Plant J 58:618–628PubMedCrossRefGoogle Scholar
  41. Price AL, Patterson NJ, Plenge RM, Weinblatt ME, Shadick NA, Reich D (2006) Principal components analysis corrects for stratification in genome-wide association studies. Nat Genet 38:904–909PubMedCrossRefGoogle Scholar
  42. Pritchard JK, Stephens M, Donnelly P (2000a) Inference of population structure using multilocus genotype data. Genetics 155:945–959PubMedGoogle Scholar
  43. Pritchard JK, Stephens M, Rosenberg NA, Donnelly P (2000b) Association mapping in structured populations. Am J Hum Genet 67:170–181PubMedCrossRefGoogle Scholar
  44. Purcell S, Cherny SS, Sham PC (2003) Genetic power calculator: design of linkage and association genetic mapping studies of complex traits. Bioinformatics 19:149–150PubMedCrossRefGoogle Scholar
  45. Rohlf FJ (2000) NTSYS-pc. Numerical taxonomy and multivariate analysis system, Version 2.1. Exeter Software, New YorkGoogle Scholar
  46. Rosenberg NA (2004) DISTRUCT: a program for the graphical display of population structure. Mol Ecol Notes 4:137–138CrossRefGoogle Scholar
  47. Salvi S, Sponza G, Morgante M, Tomes D, Niu XM§, Fengler KA, Meeley R, Ananiev EV, Svitashev S, Bruggemann E, Li BL, Hainey CF, Radovic S, Zaina G, Rafalski JA, Tingey SV, Miao GH, Phillips RL, Tuberosa R (2007) Conserved non-coding genomic sequences associated with a flowering-time quantitative trait locus in maize. Proc Natl Acad Sci USA 104:11376–11381PubMedCrossRefGoogle Scholar
  48. Schnable PS, Ware D, Fulton RS, Stein JC, Wei FS, Pasternak S, Liang CZ, Zhang JW, Fulton L, Graves TA, Minx P, Reily AD, Courtney L, Kruchowski SS, Tomlinson C, Strong C, Delehaunty K, Fronick C, Courtney B, Rock SM, Belter E, Du FY, Kim K, Abbott RM, Cotton M, Levy A, Marchetto P, Ochoa K, Jackson SM, Gillam B et al (2009) The B73 maize genome: complexity, diversity, and dynamics. Science 326:1112–1115PubMedCrossRefGoogle Scholar
  49. Spencer CCA, Su Z, Donnelly P, Marchini J (2009) Designing genome-wide association studies: sample size, power, imputation, and the choice of genotyping chip. PLoS Genetics 5:e1000477PubMedCrossRefGoogle Scholar
  50. Stich B, Möhring J, Piepho HP, Heckenberger M, Buckler ES, Melchinger AE (2008) Comparison of mixed-model approaches for association mapping. Genetics 178:1745–1754PubMedCrossRefGoogle Scholar
  51. Szalma SJ, Buckler ES, Snook ME, McMullen MD (2005) Association analysis of candidate genes for maysin and chlorogenic acid accumulation in maize silks. Theor Appl Genet 110:1324–1333PubMedCrossRefGoogle Scholar
  52. Tester M, Langridge P (2010) Breeding technologies to increase crop production in a changing world. Science 327:818–822PubMedCrossRefGoogle Scholar
  53. Thornsberry JM, GoodmanM M, Doebley J, Kresovich S, Nielsen D, Buckler ES (2001) Dwarf8 polymorphisms associated with variation in flowering time. Nat Genet 28:286–289PubMedCrossRefGoogle Scholar
  54. Varshney RK, Nayak SN, May GD, Jackson SA (2009) Next-generation sequencing technologies and their implications for crop genetics and breeding. Trends Biotechnol 27:522–530PubMedCrossRefGoogle Scholar
  55. Vielle-Calzada JP, de la Vega OM, Hernández-Guzmán G, Ibarra-Laclette E, Alvarez-Mejía C, Vega-Arreguín JC, Jiménez-Moraila B, Fernández-Cortés A, Corona-Armenta G, Herrera-Estrella L, Herrera-Estrella A (2009) The palomero genome suggests metal effects on domestication. Science 326:1078PubMedCrossRefGoogle Scholar
  56. Vigouroux Y, Glaubitz JC, Matsuoka Y, Goodman MM, Sánchez GJ, Doebley J (2008) Population structure and genetic diversity of new world maize races assessed by dna microsatellites. Am J Bot 95:1240–1253PubMedCrossRefGoogle Scholar
  57. Visscher PM (2008) Sizing up human height variation. Nat Genet 40:489–490PubMedCrossRefGoogle Scholar
  58. Wang RH, Yu YT, Zhao JR, Shi YS, Song YC, Wang TY, Li Y (2008) Population structure and linkage disequilibrium of a mini core set of maize inbred lines in China. Theor Appl Genet 117:1141–1153PubMedCrossRefGoogle Scholar
  59. Wilson LM, Wllitt SR, lbáñes AM, Rocheford TR, Goodman MM, Buckler ES (2004) Dissection of maize kernel composition and starch production by candidate associations. Plant Cell 16:2719–2733PubMedCrossRefGoogle Scholar
  60. Xie CX, Warburton M, Li MS, Li XH, Xiao MJ, Hao ZF, Zhao Q, Zhang SH (2008) An analysis of population structure and linkage disequilibrium using multilocus data in 187 maize inbred lines. Mol Breed 21:407–418CrossRefGoogle Scholar
  61. Yan JB, Shah T, Warburton ML, Buckler ES, McMullen MD, Crouch J (2009) Genetic characterization and linkage disequilibrium estimation of a global maize collection using SNP markers. PloS ONE 4:e8451PubMedCrossRefGoogle Scholar
  62. Yan JB, Kandianis CB, Harjes CE, Bai L, Kim EH, Yang XH, Skinner D, Fu ZY, Mitchell S, Li Q, Fernandez MGS, Zaharieva M, Babu R, Fu Y, Palacios N, Li JS, DellaPenna D, Brutnell BucklerES, Warburton ML, Rocheford T (2010a) Rare genetic variation at Zea mays crtRB1 increases β-carotene in maize grain. Nat Genet 42:322–327PubMedCrossRefGoogle Scholar
  63. Yan JB, Warburton M, Crouch J (2010b) Association mapping for enhancing maize genetic improvement. Crop Sci (in press)Google Scholar
  64. Yan JB, Yang XH, Hector S, Sánchez H, Li JS, Warburton M, Zhou Y, Crouch JH, Xu YB (2010c) High-throughput SNP genotyping with the GoldenGate assay in maize. Mol Breed 25:441–451CrossRefGoogle Scholar
  65. Yang XH, Yan JB, Shah T, Warburton ML, Li Q, Li L, Gao YF, Chai YC, Fu ZY, Zhou Y, Xu ST, Bai GH, Meng YJ, Zheng YP, Li JS (2010) Genetic analysis and characterization of a new maize association mapping panel for quantitative trait loci dissection. Theor Appl Genet 121:417–431PubMedCrossRefGoogle Scholar
  66. Yu JM, Buckler ES (2006) Genetic association mapping and genome organization of maize. Curr Opin Biotechnol 17:1–6CrossRefGoogle Scholar
  67. Yu JM, Pressoir G, Briggs WH, Bi IV, Yamasaki M, Doebley JF, McMullen MD, Gaut BS, Holland JB, Kresovich S, Buckler ES (2006) A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nat Genet 38:203–208PubMedCrossRefGoogle Scholar
  68. Yu JM, Zhang ZW, Zhu CS, Tabanao DA, Pressoir G, Tuinstra MR, Kresovich S, Todhunter RJ, Buckler ES (2009) Simulation appraisal of the adequacy of number of background markers for relationship estimation in association mapping. Plant Genome 2:63–77CrossRefGoogle Scholar
  69. Zhang ZW, Buckler ED, Casstevens TM, Bradbury PJ (2009) Software engineering the mixed model for genome-wide association studies on large samples. Brief Bioinform 10:664–675PubMedCrossRefGoogle Scholar
  70. Zhao K, Aranzana MJ, Kim S, Lister C, Shindo C, Tang C, Toomajian C, Zheng H, Dean C, Marjoram P, Nordborg M (2007) An arabidopsis example of association mapping in structured samples. PLoS Genet 3:e4PubMedCrossRefGoogle Scholar
  71. Zheng G, Freidlin B, Li ZH, Gastwirth JL (2005) Genomic control for association studies under various genetic models. Biometrics 61:186–192PubMedCrossRefGoogle Scholar
  72. Zhu CS, Yu JM (2009) Nonmetric multidimensional scaling corrects for population structure in association mapping with different sample types. Genetics 182:875–888PubMedCrossRefGoogle Scholar
  73. Zhu CS, Gore M, Buckler ES, Yu JM (2008) Status and prospects of association mapping in plants. Plant Genome 1:5–20CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Xiaohong Yang
    • 1
  • Shibin Gao
    • 2
  • Shutu Xu
    • 1
  • Zuxin Zhang
    • 3
  • Boddupalli M. Prasanna
    • 4
  • Lin Li
    • 1
  • Jiansheng Li
    • 1
  • Jianbing Yan
    • 1
    • 4
  1. 1.National Maize Improvement Center of China, Beijing Key Laboratory of Crop Genetic ImprovementChina Agricultural UniversityBeijingChina
  2. 2.Maize Research InstituteSichuan Agricultural UniversityYa’anChina
  3. 3.National Key Laboratory of Crop ImprovementHuazhong Agricultural UniversityWuhanChina
  4. 4.International Maize and Wheat Improvement Center (CIMMYT)MexicoMexico

Personalised recommendations