Advertisement

Molecular Breeding

, Volume 26, Issue 4, pp 711–718 | Cite as

High-throughput genotyping of unknown genomic terrain in complex plant genomes: lessons from a case study

  • Simen Rød Sandve
  • Heidi Rudi
  • Guro Dørum
  • Paul Ragnar Berg
  • Odd Arne Rognli
Short Communication

Abstract

Novel high-throughput genotyping technologies have facilitated rapid genotyping of single nucleotide polymorphisms in non-model organisms. Most plant species have complex genomes with a large proportion of their genes having one or more paralogous copies due to single gene duplications and ancient or recent polyploidization events. These paralogous gene copies are potential sources of genotyping errors, and hence genotyping of plant genomes is inherently difficult. Here we present a case study that exemplifies paralog-related problems in high-throughput genotyping of plant genomes. We used the MassARRAY genotyping platform to genotype the LpIRI locus in L. perenne populations; this gene is thought to be involved in low-temperature stress tolerance. The dissection of the molecular genetics underlying the genotyping results provides a good example of how unknown paralogs can mask the true genotype of the locus, instructive to the non-specialist plant researcher and breeder.

Keywords

Genotyping error Paralogs Plant MassARRAY 

Notes

Acknowledgments

We thank Kjetil Fosnes for technical assistance, and Odd-Arne Olsen, Torben Asp, and reviewers for valuable comments on the manuscript. We thank Magnus Dehli Vigeland for help with statistical modelling. The Bayesian phylogenetic analysis was carried out through the Bioportal server at University of Oslo. This work was funded through the KMB project Festulolium with Improved Forage Quality and Winter Survival for Norwegian Farming, project number 173319/I10, funded by the Research Council of Norway and Graminor AS.

Supplementary material

11032_2010_9479_MOESM1_ESM.pdf (21 kb)
Supplementary material 1 (PDF 20 kb)

References

  1. Akhunov E, Nicolet C, Dvorak J (2009) Single nucleotide polymorphism genotyping in polyploid wheat with the Illumina GoldenGate assay. Theor Appl Genet 119:507–517CrossRefPubMedGoogle Scholar
  2. Bérard A, Le Paslier MC, Dardevet M, Exbrayat-Vinson F, Bonnin I, Cenci A, Haudry A, Brunel D, Ravel C (2009) High-throughput single nucleotide polymorphism genotyping in wheat (Triticum spp.). Plant Biotechnol J 7:364–374CrossRefPubMedGoogle Scholar
  3. Blanc G, Wolfe KH (2004) Widespread paleopolyploidy in model plant species inferred from age distributions of duplicate genes. Plant Cell 16:1667–1678CrossRefPubMedGoogle Scholar
  4. Bray MS, Boerwinkle E, Doris PA (2001) High-throughput multiplex SNP genotyping with MALDI-TOF mass spectrometry: practice, problems and promise. Hum Mutat 17:296–304CrossRefPubMedGoogle Scholar
  5. Butler H, Ragoussis J (2008) BeadArray-based genotyping. In: Starkey J, Elaswarapu R (eds) Methods in molecular biology, vol 439: Genomics protocols, 2nd edn. Humana Press Inc., Totowa, NJ, pp 53–74Google Scholar
  6. Choi I-Y, Hyten DL, Matukumalli LK, Song Q, Chaky JM, Quigley CV, Chase K, Lark KG, Reiter RS, Yoon M-S, Hwang E-Y, Yi S-I, Young ND, Shoemaker RC, van Tassell CP, Specht JE, Cregan PB (2007) A soybean transcript map: gene distribution, haplotype and single-nucleotide polymorphism analysis. Genetics 176:685–696CrossRefPubMedGoogle Scholar
  7. Gaut BS, Morton BR, McCaig BC, Clegg MT (1996) Substitution rate comparisons between grasses and palms: synonymous rate differences at the nuclear gene Adh parallel rate differences at the plastid gene rbcL. Proc Natl Acad Sci USA 93:10274–10279CrossRefPubMedGoogle Scholar
  8. Huang S, Sirikhachornkit A, Su X, Faris J, Gill B, Haselkorn R, Gornicki P (2002) Genes encoding plastid acetyl-CoA carboxylase and 3-phosphoglycerate kinase of the Triticum/Aegilops complex and the evolutionary history of polyploid wheat. Proc Natl Acad Sci USA 99:8133–8138CrossRefPubMedGoogle Scholar
  9. Huelsenbeck JP, Ronquist F (2001) MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17:754–755CrossRefPubMedGoogle Scholar
  10. Hyten D, Song Q, Choi I-Y, Yoon M-S, Specht J, Matukumalli L, Nelson R, Shoemaker R, Young N, Cregan P (2008) High-throughput genotyping with the GoldenGate assay in the complex genome of soybean. Theor Appl Genet 116:945–952CrossRefPubMedGoogle Scholar
  11. Jobb G, von Haeseler A, Strimmer K (2004) TREEFINDER: a powerful graphical analysis environment for molecular phylogenetics. BMC Evol Biol 4:18CrossRefPubMedGoogle Scholar
  12. Lam K-WG, Jeffreys AJ (2006) Processes of copy-number change in human DNA: the dynamics of α-globin gene deletion. Proc Natl Acad Sci USA 103:8921–8927CrossRefPubMedGoogle Scholar
  13. Rensing SA, Lang D, Zimmer AD, Terry A, Salamov A, Shapiro H, Nishiyama T, Perroud P-F, Lindquist EA, Kamisugi Y, Tanahashi T, Sakakibara K, Fujita T, Oishi K, Shin-I T, Kuroki Y, Toyoda A, Suzuki Y, Hashimoto S-I, Yamaguchi K, Sugano S, Kohara Y, Fujiyama A, Anterola A, Aoki S, Ashton N, Barbazuk WB, Barker E, Bennetzen JL, Blankenship R, Cho SH, Dutcher SK, Estelle M, Fawcett JA, Gundlach H, Hanada K, Heyl A, Hicks KA, Hughes J, Lohr M, Mayer K, Melkozernov A, Murata T, Nelson DR, Pils B, Prigge M, Reiss B, Renner T, Rombauts S, Rushton PJ, Sanderfoot A, Schween G, Shiu S-H, Stueber K, Theodoulou FL, Tu H, Van de Peer Y, Verrier PJ, Waters E, Wood A, Yang L, Cove D, Cuming AC, Hasebe M, Lucas S, Mishler BD, Reski R, Grigoriev IV, Quatrano RS, Boore JL (2008) The Physcomitrella genome reveals evolutionary insights into the conquest of land by plants. Science 319:64–69CrossRefPubMedGoogle Scholar
  14. Rozas J, Sanchez-DelBarrio JC, Messeguer X, Rozas R (2003) DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics 19:2496–2497CrossRefPubMedGoogle Scholar
  15. Sandve SR, Rudi H, Asp T, Rognli OA (2008) Tracking the evolution of a cold stress associated gene family in cold tolerant grasses. BMC Evol Biol 8:245CrossRefPubMedGoogle Scholar
  16. Storz JF, Baze M, Waite JL, Hoffmann FG, Opazo JC, Hayes JP (2007) Complex signatures of selection and gene conversion in the duplicated globin genes of house mice. Genetics 177:481–500CrossRefPubMedGoogle Scholar
  17. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599CrossRefPubMedGoogle Scholar
  18. Yang Z, Nielsen R, Goldman N, Pedersen A-MK (2000) Codon-substitution models for heterogeneous selection pressure at amino acid sites. Genetics 155:431–449PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Simen Rød Sandve
    • 1
  • Heidi Rudi
    • 1
  • Guro Dørum
    • 2
  • Paul Ragnar Berg
    • 3
  • Odd Arne Rognli
    • 1
  1. 1.Department of Plant and Environmental SciencesNorwegian University of Life SciencesÅsNorway
  2. 2.Department of Chemistry, Biotechnology, and Food ScienceNorwegian University of Life SciencesÅsNorway
  3. 3.Centre for Integrative Genetics (CIGENE)Norwegian University of Life SciencesÅsNorway

Personalised recommendations