Skip to main content
Log in

Inheritance of growth habit detected by genetic linkage analysis using microsatellites in the common bean (Phaseolus vulgaris L.)

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

The genetic linkage map for the common bean (Phaseolus vulgaris L.) is a valuable tool for breeding programs. Breeders provide new cultivars that meet the requirements of farmers and consumers, such as seed color, seed size, maturity, and growth habit. A genetic study was conducted to examine the genetics behind certain qualitative traits. Growth habit is usually described as a recessive trait inherited by a single gene, and there is no consensus about the position of the locus. The aim of this study was to develop a new genetic linkage map using genic and genomic microsatellite markers and three morphological traits: growth habit, flower color, and pod tip shape. A mapping population consisting of 380 recombinant F10 lines was generated from IAC-UNA × CAL143. A total of 871 microsatellites were screened for polymorphisms among the parents, and a linkage map was obtained with 198 mapped microsatellites. The total map length was 1865.9 cM, and the average distance between markers was 9.4 cM. Flower color and pod tip shape were mapped and segregated at Mendelian ratios, as expected. The segregation ratio and linkage data analyses indicated that the determinacy growth habit was inherited as two independent and dominant genes, and a genetic model is proposed for this trait.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

AFLP:

Amplified fragment length polymorphism

CTAB:

Cetyltrimethylammonium bromide

CNL:

Coiled-coil nucleotide-binding site leucine-rich repeat

EST:

Expressed sequence tag

IAC:

Agronomic Institute of Campinas

PCR:

Polymerase chain reaction

RAPD:

Random amplified polymorphic DNA

RIL:

Recombinant inbred line

RFLP:

Restriction fragment length polymorphism

SSR:

Single sequence repeat

UC:

IAC-UNA × CAL143

References

  • Adam-Blondom AM, Sévignac M, Dron M (1994) A genetic map of common bean to localize specific resistance genes against anthracnose. Genome 37:915–924

    Article  Google Scholar 

  • Al-Mukhtar FA, Coyne DP (1981) Inheritance and association of flower, ovule, seed, pod and maturity characters in dry edible beans (Phaseolus vulgaris L.). J Am Soc Hort Sci 106:713–719

    Google Scholar 

  • Arumuganathan K, Earle ED (1991) Nuclear DNA content of some important plant species. Plant Mol Biol 9:208–218

    Article  CAS  Google Scholar 

  • Bai Y, Michaels TE, Pauls KP (1997) Identification of RAPD markers linked to common bacterial blight resistance genes in Phaseolus vulgaris L. Genome 40:544–551

    Article  PubMed  CAS  Google Scholar 

  • Basset MJ (1991) A revised linkage map of common bean. Hort Sci 26:834–836

    Google Scholar 

  • Benchimol LL, Campos T, Carbonell SAM, Colombo CA, Chioratto AF, Formighieri EF, Gouvea LRL, Souza AP (2007) Structure of genetic diversity among common bean (Phaseolus vulgaris L.) varieties of Mesoamerican and Andean origins using new developed microsatellite markers. Genet Res Crop Evol 54:1747–1762

    Article  CAS  Google Scholar 

  • Blair MW, Pedraza F, Buedia HF, Gaitán-Solís E, Beebe SE, Gepts P, Tohme J (2003) Development of a genome-wide anchored microsatellite map for common bean (Phaseolus vulgaris L.). Theor Appl Genet 107:1362–1374

    Article  PubMed  CAS  Google Scholar 

  • Blair MW, Giraldo MC, Buendia HF, Tovar E, Duque MC, Beebe SE (2006a) Microsatellite marker diversity in common bean (Phaseolus vulgaris L.). Theor Appl Genet 113:100–109

    Article  PubMed  CAS  Google Scholar 

  • Blair MW, Iriarte G, Beebe S (2006b) QTL analysis of yield traits in an advanced backcross population derived from a cultivated Andean × wild common bean (Phaseolus vulgaris L.) cross. Theor Appl Genet 112:1149–1163

    Article  PubMed  CAS  Google Scholar 

  • Blair MW, Buendía HF, Giraldo MC, Métais I, Peltier D (2008) Characterization of AT-rich microsatellites in common bean (Phaseolus vulgaris L.). Theor Appl Genet 118:91–103

    Article  PubMed  CAS  Google Scholar 

  • Blair MW, Díaz LM, Buendía HF, Duque MC (2009) Genetic diversity, seed size associations and population structure of a core collection in common beans (Phaseolus vulgaris L.). Theor Appl Genet 119:955–972

    Article  PubMed  CAS  Google Scholar 

  • Buso GSC, Amaral ZPS, Brondani RPV, Ferreira ME (2006) Microsatellite markers for the common bean Phaseolus vulgaris. Mol Ecol Notes 6:252–254

    Article  CAS  Google Scholar 

  • Caixeta ET, Borém A, Kelly JD (2005) Development of microsatellite markers based on BAC common bean clones. Crop Breed Appl Biotechnol 5:125–133

    CAS  Google Scholar 

  • Campos T, Benchimol LL, Carbonell SAM, Chioratto AF, Formighieri EF, Souza AP (2007) Microsatellites for genetic studies and breeding programs in common bean. Pesq Agropec Bras 42:589–592

    Article  Google Scholar 

  • Cardoso JMK, Oblessuc PR, Campos T, Sforça DA, Carbonell SAM, Chioratto AF, Formighieri EE, Souza AP, Benchimol LL (2008) New microsatellite markers developed from an enriched microsatellite common bean library. Pesq Agropec Bras 43:929–936

    Article  Google Scholar 

  • Condit R, Hubbell SP (1991) Abundance and DNA sequence of two-base regions in tropical tree genomes. Genome 34:66–71

    PubMed  CAS  Google Scholar 

  • Creste S, Tulmann A, Figueira A (2001) Detection of single sequence repeat polymorphism in denaturating polyacrylamide sequencing gels by silver staining. Plant Mol Biol 19:299–306

    Article  CAS  Google Scholar 

  • Creusot F, Macadré C, Ferrier Cana E, Riou C, Geffroy V, Sévignac M, Dron M, Langin T (1999) Cloning and molecular characterization of three members of the NBS-LRR subfamily located in the vicinity of the Co-2 locus for anthracnose resistance in Phaseolus vulgaris. Genome 42:254–264

    Article  PubMed  CAS  Google Scholar 

  • David P, Chen NWG, Pedrosa-Harand A, Thareau V, Sévignac M, Cannon SB, Debouck D, Langin T, Geffroy V (2009) A nomadic subtelomeric disease resistance gene cluster in common bean. Plant Physiol 151:1048–1065

    Article  PubMed  CAS  Google Scholar 

  • Freyre CI, Skroch P, Geffroy V, Adam-Blondon AF, Shirmohamadali A, Johnson W, Llaca V, Nodari R, Pereira P, Tsai SM, Tohme J, Dron M, Nienhuis J, Vallejos C, Gepts P (1998) Towards an integrated linkage map of common bean. 4. Development of a core map and alignment of RFLP maps. Theor Appl Genet 97:847–856

    Article  CAS  Google Scholar 

  • Gaitán-Solís E, Duque MC, Edwards KJ, Tohme J (2002) Microsatellite in common bean (Phaseolus vulgaris): isolation, characterization, and cross-species amplification in—Phaseolus ssp. Crop Sci 42:2128–2136

    Article  Google Scholar 

  • Geffroy V, Macadré C, David P, Pedrosa-Harand A, Sevignac M, Dauga C, Langin T (2009) Molecular analysis of a large subtelomeric nucleotide binding-site-leucine-rich-repeat family in two representative genotypes of the major gene pools of Phaseolus vulgaris. Genetics 181:405–419

    Article  PubMed  CAS  Google Scholar 

  • Gepts PR, Nodari R, Tsai R, Koinange EMK, Llaca V, Gilbertson R, Guzman P (1993) Linkage mapping in common bean. Annu Rep Bean Improve Coop 36:24–38

    Google Scholar 

  • Grisi MCM, Blair MW, Gepts P, Brondani C, Pereira PAA, Brondani RPV (2007) Genetic mapping of a new set of microsatellite markers in a reference common bean (Phaseolus vulgaris) population BAT93 × Jalo EEP558. Genet Mol Res 6:691–706

    PubMed  CAS  Google Scholar 

  • Guerra-Sanz JM (2004) New SSR markers of Phaseolus vulgaris from sequence databases. Plant Breed 123:87–89

    Article  CAS  Google Scholar 

  • Guo X, Castill-Ramirez S, Gonzalez V, Bustos P, Fernandez-Vazgueq JL, Santamaria RI, Arellano J, Cevallos MA, Davila G (2007) Rapid evolutionary change of common bean (Phaseolus vulgaris L.) plastome, and the genomic diversification of legume chloroplasts. BMC Genomics 8:228

    Article  PubMed  Google Scholar 

  • Hackuf B, Wehling P (2002) Identification of microsatellite polymorphism in an expressed portion of rye genome. Plant Breed 121:17–25

    Article  Google Scholar 

  • Hanai LR, Campos T, Camargo LEA, Benchimol LL, Souza AP, Melloto M, Carbonell SAM, Chioratto AF, Consoli L, Formighieri EF, Siqueira M, Tsai SM, Vieira MLC (2007) Development, characterization, and comparative analysis of polymorphism at common bean SSR loci isolated from genic and genomic sources. Genome 50:266–277

    Article  PubMed  CAS  Google Scholar 

  • Harper GL, Maclean N, Goulson D (2003) Microsatellite markers to assess the influence of population size, isolation and demographic change on the genetic structure of the UK butterfly Polyommatus bellargus. Mol Ecol 12:3349–3357

    Article  PubMed  CAS  Google Scholar 

  • Hoisington D, Khairallah M, González-de-León D (1994) Laboratory protocols: CIMMYT applied molecular genetics laboratory, 2nd edn. CIMMYT, Mexico, DF

    Google Scholar 

  • Hougaard BK, Madsen LH, Sandal N, Moretzsohn MC, Fredslund J, Schauser L, Nielsen AM, Rohde T, Sato S, Tabata S, Bertioli DJ, Stougaard J (2008) Legume anchor markers link syntenic regions between Phaseolus vulgaris, Lotus japonicus, Medicago truncatula and Arachis. Genetics 179:2299–2312

    Article  PubMed  Google Scholar 

  • Koinange EMK, Singh SP, Gepts P (1996) Genetic control of the domestication syndrome in common bean. Crop Sci 36:1037–1045

    Article  Google Scholar 

  • Kornegay J, White JW, Cruz OO (1992) Growth habit and gene pool effects on inheritance of yield in common bean. Euphytica 62:171–180

    Article  Google Scholar 

  • Kosambi DD (1944) The estimation of map distances from recombination values. Ann Eugen 12:172–175

    Google Scholar 

  • Kwak M, Velasco D, Gepts P (2008) Mapping homologous sequences for determinacy and photoperiod sensitivity in common bean (Phaseolus vulgaris). J Hered 99:283–291

    Article  PubMed  CAS  Google Scholar 

  • Lamprecht H (1935) Zur Genetik von Phaseolus vulgaris. X. Über Infloreszenztypen und ihre Vererbung. Hereditas 20:71–93

    Article  Google Scholar 

  • Lamprecht H (1939) Zur Genetik von Phaseolus vulgaris. XIV. Über die Wirkung der Gene P, C, J, Ins, Can, G, B, V, Vir, Och und Flav. Hereditas 25:255–288

    Article  Google Scholar 

  • Lander ES, Green P, Abrahamson J, Barlow A, Daly MJ, Lincoln SE, Newburg L (1987) Mapmaker: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1:174–181

    Article  PubMed  CAS  Google Scholar 

  • Lynch M, Walsh B (1998) Genetics and analysis of quantitative traits. Sinauer Associates, Sunderland 980p

    Google Scholar 

  • McClean PE, Lee PK, Otto C, Getps P, Bassett MJ (2002) Molecular and phenotypic mapping of genes controlling seed coat pattern and color in common bean (Phaseolus vulgaris L.). J Hered 93:148–152

    Article  PubMed  CAS  Google Scholar 

  • Métais I, Hamon B, Jalouzot R, Peltier D (2002) Structure and level of genetic diversity in various bean types evidenced with microsatellite markers isolated from a genomic enriched library. Theor Appl Genet 104:1346–1352

    Article  PubMed  Google Scholar 

  • Mollinari M, Margarido GRA, Vencovsky R, Garcia AAF (2009) Evaluation of algorithms used to order markers on genetic maps. Heredity 103:494–502

    Article  PubMed  CAS  Google Scholar 

  • Moore SS, Hale P, Byrne K (1998) NCAM: a polymorphic microsatellite locus conserved across eutherian mammal species. Anim Genet 29:33–36

    Article  PubMed  CAS  Google Scholar 

  • Murray J, Larsen J, Michaels TE, Schaafsma A, Vallejos CE, Pauls KP (2002) Identification of putative genes in bean (Phaseolus vulgaris) genomic (Bng) RFLP clones and their conversion to STSs. Genome 45:1013–1024

    Article  PubMed  CAS  Google Scholar 

  • Nodari RO, Tsai SM, Gilbertson RL, Gepts P (1993) Towards an integrated map of common bean-2: development of a RFLP-based linkage map. Theor Appl Genet 85:513–520

    Article  CAS  Google Scholar 

  • Oliveira KM, Pinto LR, Marconi TG, Molinari M, Ulian EC, Chabregas SM, Falco MC, Burnquist W, Garcia AAF, Souza AP (2009) Characterization of new polymorphic functional markers for sugarcane. Genome 52:191–209

    Article  PubMed  CAS  Google Scholar 

  • Pedrosa A, Porch T, Gepts P (2008) Standard nomenclature for common bean chromosomes and linkage groups. Annu Rept Bean Improv Coop 51:106–107

    Google Scholar 

  • Primmer CR, Raudsepp T, Chowdhary BP, Møller AP, Ellegren H (1997) Low frequency of microsatellites in the avian genome. Genome Res 7:471–482

    PubMed  CAS  Google Scholar 

  • Rico C, Zadworny D, Kuhnlein U, Fitzgerald GJ (1993) Characterization of hypervariable microsatellite loci in the threespine stickleback Gasterosteus aculeatus. Mol Ecol 2:271–272

    Article  PubMed  CAS  Google Scholar 

  • Rodríguez-Suárez C, Méndez-Vigo B, Pañeda A, Ferreira JJ, Giraldez R (2006) A genetic linkage map of Phaseolus vulgaris L. and localization of genes for specific resistance to six races of anthracnose (Colletotrichum lindemuthianum). Theor Appl Genet 114:713–722

    Article  PubMed  Google Scholar 

  • Rudorf W (1958) Genetics of Phaseolus aborigineus Burkart. Proc X Intl Congr Genet 2:243 (Abstr.)

    Google Scholar 

  • Schlueter JA, Goicoechea JL, Collura K, Gill N, Lin J, Yu Y, Kudrna D, Zuccolo A, Vallejos CE, Muñoz-Torres M, Blair MW, Tohme J, Tomkins J, McClean P, Wing RA, Jackson SA (2008) BAC-end sequence analysis and a draft physical map of the common bean (Phaseolus vulgaris L.) genome. Trop Plant Biol 1:40–48

    Article  CAS  Google Scholar 

  • Schuelke M (2000) An economic method for the fluorescent labeling of PCR fragments. Nat Biotechnol 18:233–234

    Article  PubMed  CAS  Google Scholar 

  • Shizhong X (2008) Quantitative trait locus mapping can benefit from segregation distortion. Genetics 180:2201–2208

    Article  Google Scholar 

  • Singh S, Nodari R, Gepts P (1991) Genetic diversity in cultivated common bean. II. Marker-based analysis of morphological and agronomic traits. Crop Sci 31:23–29

    Article  CAS  Google Scholar 

  • Ta’an B, Michaels TE, Pauls KP (2001) Identification of markers associated with quantitative traits in beans. Annu Rep Bean Improve Coop 44:9–10

    Google Scholar 

  • Tar’an B, Michaels TE, Pauls KP (2002) Genetic mapping of agronomic traits in common bean. Crop Sci 42:544–556

    Article  Google Scholar 

  • Tautz D, Renz M (1984) Simple sequence repeats are ubiquitous repetitive components of eukaryotic genomes. Nucleic Acids Res 12:4127–4137

    Article  PubMed  CAS  Google Scholar 

  • Vallejos CE, Sakiyama NS, Chase CD (1992) A molecular marker-based linkage map of Phaseolus vulgaris L. Genetics 131:733–740

    PubMed  CAS  Google Scholar 

  • Yaish MWF, Pérez de la Vega M (2003) Isolation of (GA)n microsatellite sequences and description of a predicted MADS-box sequence isolated from common bean (Phaseolus vulgaris L.). Genet Mol Biol 26:337–342

    Article  CAS  Google Scholar 

  • Yang GP, Shagai Maroof MA, Xu CG, Zhang Q, Biyashev RM (1994) Comparative analysis of microsatellite DNA polymorphism in landraces and cultivars of rice. Mol Gen Genet 245:187–194

    Article  PubMed  CAS  Google Scholar 

  • Yu K, Park SJ, Poysa V (1999) Abundance and variation of microsatellite DNA sequences in beans (Phaseolus vulgaris and Vigna). Genome 42:27–34

    Article  CAS  Google Scholar 

  • Yu K, Park SJ, Poysa V, Gepts P (2000) Integration of simple sequence repeat (SSR) markers into a molecular linkage map of common bean (Phaseolus vulgaris L.). J Hered 91:429–434

    Article  PubMed  CAS  Google Scholar 

  • Zhang X, Blair MW, Wang S (2008) Genetic diversity of Chinese common bean (Phaseolus vulgaris L.) landraces assessed with simple sequence repeat markers. Theor Appl Genet 117:629–664

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from State of São Paulo Research Foundation (FAPESP). The authors are also grateful Brazilian National Council for Scientific and Technological Development (CNPq) for a graduate fellowship to C.T. and grants to A.P.S.; FAPESP for graduate fellowship to P.R.O., J.M.K.C., R.M.B., A.C.B.S. and an undergraduate fellowship to D.A.S.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anete Pereira de Souza.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Campos, T., Oblessuc, P.R., Sforça, D.A. et al. Inheritance of growth habit detected by genetic linkage analysis using microsatellites in the common bean (Phaseolus vulgaris L.). Mol Breeding 27, 549–560 (2011). https://doi.org/10.1007/s11032-010-9453-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11032-010-9453-x

Keywords

Navigation