Molecular Breeding

, Volume 27, Issue 4, pp 549–560 | Cite as

Inheritance of growth habit detected by genetic linkage analysis using microsatellites in the common bean (Phaseolus vulgaris L.)

  • Tatiana de Campos
  • Paula Rodrigues Oblessuc
  • Danilo Augusto Sforça
  • Juliana Morini Kupper Cardoso
  • Renata Moro Baroni
  • Adna Cristina Barbosa de Sousa
  • Sérgio Augusto Morais Carbonell
  • Alisson Fernando Chioratto
  • Antonio Augusto Franco Garcia
  • Luciana Benchimol Rubiano
  • Anete Pereira de Souza
Article

Abstract

The genetic linkage map for the common bean (Phaseolus vulgaris L.) is a valuable tool for breeding programs. Breeders provide new cultivars that meet the requirements of farmers and consumers, such as seed color, seed size, maturity, and growth habit. A genetic study was conducted to examine the genetics behind certain qualitative traits. Growth habit is usually described as a recessive trait inherited by a single gene, and there is no consensus about the position of the locus. The aim of this study was to develop a new genetic linkage map using genic and genomic microsatellite markers and three morphological traits: growth habit, flower color, and pod tip shape. A mapping population consisting of 380 recombinant F10 lines was generated from IAC-UNA × CAL143. A total of 871 microsatellites were screened for polymorphisms among the parents, and a linkage map was obtained with 198 mapped microsatellites. The total map length was 1865.9 cM, and the average distance between markers was 9.4 cM. Flower color and pod tip shape were mapped and segregated at Mendelian ratios, as expected. The segregation ratio and linkage data analyses indicated that the determinacy growth habit was inherited as two independent and dominant genes, and a genetic model is proposed for this trait.

Keywords

SSR markers Qualitative traits Phenotypic markers Molecular mapping Phaseolus vulgaris L. 

Abbreviations

AFLP

Amplified fragment length polymorphism

CTAB

Cetyltrimethylammonium bromide

CNL

Coiled-coil nucleotide-binding site leucine-rich repeat

EST

Expressed sequence tag

IAC

Agronomic Institute of Campinas

PCR

Polymerase chain reaction

RAPD

Random amplified polymorphic DNA

RIL

Recombinant inbred line

RFLP

Restriction fragment length polymorphism

SSR

Single sequence repeat

UC

IAC-UNA × CAL143

Notes

Acknowledgments

This work was supported by grants from State of São Paulo Research Foundation (FAPESP). The authors are also grateful Brazilian National Council for Scientific and Technological Development (CNPq) for a graduate fellowship to C.T. and grants to A.P.S.; FAPESP for graduate fellowship to P.R.O., J.M.K.C., R.M.B., A.C.B.S. and an undergraduate fellowship to D.A.S.

References

  1. Adam-Blondom AM, Sévignac M, Dron M (1994) A genetic map of common bean to localize specific resistance genes against anthracnose. Genome 37:915–924CrossRefGoogle Scholar
  2. Al-Mukhtar FA, Coyne DP (1981) Inheritance and association of flower, ovule, seed, pod and maturity characters in dry edible beans (Phaseolus vulgaris L.). J Am Soc Hort Sci 106:713–719Google Scholar
  3. Arumuganathan K, Earle ED (1991) Nuclear DNA content of some important plant species. Plant Mol Biol 9:208–218CrossRefGoogle Scholar
  4. Bai Y, Michaels TE, Pauls KP (1997) Identification of RAPD markers linked to common bacterial blight resistance genes in Phaseolus vulgaris L. Genome 40:544–551PubMedCrossRefGoogle Scholar
  5. Basset MJ (1991) A revised linkage map of common bean. Hort Sci 26:834–836Google Scholar
  6. Benchimol LL, Campos T, Carbonell SAM, Colombo CA, Chioratto AF, Formighieri EF, Gouvea LRL, Souza AP (2007) Structure of genetic diversity among common bean (Phaseolus vulgaris L.) varieties of Mesoamerican and Andean origins using new developed microsatellite markers. Genet Res Crop Evol 54:1747–1762CrossRefGoogle Scholar
  7. Blair MW, Pedraza F, Buedia HF, Gaitán-Solís E, Beebe SE, Gepts P, Tohme J (2003) Development of a genome-wide anchored microsatellite map for common bean (Phaseolus vulgaris L.). Theor Appl Genet 107:1362–1374PubMedCrossRefGoogle Scholar
  8. Blair MW, Giraldo MC, Buendia HF, Tovar E, Duque MC, Beebe SE (2006a) Microsatellite marker diversity in common bean (Phaseolus vulgaris L.). Theor Appl Genet 113:100–109PubMedCrossRefGoogle Scholar
  9. Blair MW, Iriarte G, Beebe S (2006b) QTL analysis of yield traits in an advanced backcross population derived from a cultivated Andean × wild common bean (Phaseolus vulgaris L.) cross. Theor Appl Genet 112:1149–1163PubMedCrossRefGoogle Scholar
  10. Blair MW, Buendía HF, Giraldo MC, Métais I, Peltier D (2008) Characterization of AT-rich microsatellites in common bean (Phaseolus vulgaris L.). Theor Appl Genet 118:91–103PubMedCrossRefGoogle Scholar
  11. Blair MW, Díaz LM, Buendía HF, Duque MC (2009) Genetic diversity, seed size associations and population structure of a core collection in common beans (Phaseolus vulgaris L.). Theor Appl Genet 119:955–972PubMedCrossRefGoogle Scholar
  12. Buso GSC, Amaral ZPS, Brondani RPV, Ferreira ME (2006) Microsatellite markers for the common bean Phaseolus vulgaris. Mol Ecol Notes 6:252–254CrossRefGoogle Scholar
  13. Caixeta ET, Borém A, Kelly JD (2005) Development of microsatellite markers based on BAC common bean clones. Crop Breed Appl Biotechnol 5:125–133Google Scholar
  14. Campos T, Benchimol LL, Carbonell SAM, Chioratto AF, Formighieri EF, Souza AP (2007) Microsatellites for genetic studies and breeding programs in common bean. Pesq Agropec Bras 42:589–592CrossRefGoogle Scholar
  15. Cardoso JMK, Oblessuc PR, Campos T, Sforça DA, Carbonell SAM, Chioratto AF, Formighieri EE, Souza AP, Benchimol LL (2008) New microsatellite markers developed from an enriched microsatellite common bean library. Pesq Agropec Bras 43:929–936CrossRefGoogle Scholar
  16. Condit R, Hubbell SP (1991) Abundance and DNA sequence of two-base regions in tropical tree genomes. Genome 34:66–71PubMedGoogle Scholar
  17. Creste S, Tulmann A, Figueira A (2001) Detection of single sequence repeat polymorphism in denaturating polyacrylamide sequencing gels by silver staining. Plant Mol Biol 19:299–306CrossRefGoogle Scholar
  18. Creusot F, Macadré C, Ferrier Cana E, Riou C, Geffroy V, Sévignac M, Dron M, Langin T (1999) Cloning and molecular characterization of three members of the NBS-LRR subfamily located in the vicinity of the Co-2 locus for anthracnose resistance in Phaseolus vulgaris. Genome 42:254–264PubMedCrossRefGoogle Scholar
  19. David P, Chen NWG, Pedrosa-Harand A, Thareau V, Sévignac M, Cannon SB, Debouck D, Langin T, Geffroy V (2009) A nomadic subtelomeric disease resistance gene cluster in common bean. Plant Physiol 151:1048–1065PubMedCrossRefGoogle Scholar
  20. Freyre CI, Skroch P, Geffroy V, Adam-Blondon AF, Shirmohamadali A, Johnson W, Llaca V, Nodari R, Pereira P, Tsai SM, Tohme J, Dron M, Nienhuis J, Vallejos C, Gepts P (1998) Towards an integrated linkage map of common bean. 4. Development of a core map and alignment of RFLP maps. Theor Appl Genet 97:847–856CrossRefGoogle Scholar
  21. Gaitán-Solís E, Duque MC, Edwards KJ, Tohme J (2002) Microsatellite in common bean (Phaseolus vulgaris): isolation, characterization, and cross-species amplification in—Phaseolus ssp. Crop Sci 42:2128–2136CrossRefGoogle Scholar
  22. Geffroy V, Macadré C, David P, Pedrosa-Harand A, Sevignac M, Dauga C, Langin T (2009) Molecular analysis of a large subtelomeric nucleotide binding-site-leucine-rich-repeat family in two representative genotypes of the major gene pools of Phaseolus vulgaris. Genetics 181:405–419PubMedCrossRefGoogle Scholar
  23. Gepts PR, Nodari R, Tsai R, Koinange EMK, Llaca V, Gilbertson R, Guzman P (1993) Linkage mapping in common bean. Annu Rep Bean Improve Coop 36:24–38Google Scholar
  24. Grisi MCM, Blair MW, Gepts P, Brondani C, Pereira PAA, Brondani RPV (2007) Genetic mapping of a new set of microsatellite markers in a reference common bean (Phaseolus vulgaris) population BAT93 × Jalo EEP558. Genet Mol Res 6:691–706PubMedGoogle Scholar
  25. Guerra-Sanz JM (2004) New SSR markers of Phaseolus vulgaris from sequence databases. Plant Breed 123:87–89CrossRefGoogle Scholar
  26. Guo X, Castill-Ramirez S, Gonzalez V, Bustos P, Fernandez-Vazgueq JL, Santamaria RI, Arellano J, Cevallos MA, Davila G (2007) Rapid evolutionary change of common bean (Phaseolus vulgaris L.) plastome, and the genomic diversification of legume chloroplasts. BMC Genomics 8:228PubMedCrossRefGoogle Scholar
  27. Hackuf B, Wehling P (2002) Identification of microsatellite polymorphism in an expressed portion of rye genome. Plant Breed 121:17–25CrossRefGoogle Scholar
  28. Hanai LR, Campos T, Camargo LEA, Benchimol LL, Souza AP, Melloto M, Carbonell SAM, Chioratto AF, Consoli L, Formighieri EF, Siqueira M, Tsai SM, Vieira MLC (2007) Development, characterization, and comparative analysis of polymorphism at common bean SSR loci isolated from genic and genomic sources. Genome 50:266–277PubMedCrossRefGoogle Scholar
  29. Harper GL, Maclean N, Goulson D (2003) Microsatellite markers to assess the influence of population size, isolation and demographic change on the genetic structure of the UK butterfly Polyommatus bellargus. Mol Ecol 12:3349–3357PubMedCrossRefGoogle Scholar
  30. Hoisington D, Khairallah M, González-de-León D (1994) Laboratory protocols: CIMMYT applied molecular genetics laboratory, 2nd edn. CIMMYT, Mexico, DFGoogle Scholar
  31. Hougaard BK, Madsen LH, Sandal N, Moretzsohn MC, Fredslund J, Schauser L, Nielsen AM, Rohde T, Sato S, Tabata S, Bertioli DJ, Stougaard J (2008) Legume anchor markers link syntenic regions between Phaseolus vulgaris, Lotus japonicus, Medicago truncatula and Arachis. Genetics 179:2299–2312PubMedCrossRefGoogle Scholar
  32. Koinange EMK, Singh SP, Gepts P (1996) Genetic control of the domestication syndrome in common bean. Crop Sci 36:1037–1045CrossRefGoogle Scholar
  33. Kornegay J, White JW, Cruz OO (1992) Growth habit and gene pool effects on inheritance of yield in common bean. Euphytica 62:171–180CrossRefGoogle Scholar
  34. Kosambi DD (1944) The estimation of map distances from recombination values. Ann Eugen 12:172–175Google Scholar
  35. Kwak M, Velasco D, Gepts P (2008) Mapping homologous sequences for determinacy and photoperiod sensitivity in common bean (Phaseolus vulgaris). J Hered 99:283–291PubMedCrossRefGoogle Scholar
  36. Lamprecht H (1935) Zur Genetik von Phaseolus vulgaris. X. Über Infloreszenztypen und ihre Vererbung. Hereditas 20:71–93CrossRefGoogle Scholar
  37. Lamprecht H (1939) Zur Genetik von Phaseolus vulgaris. XIV. Über die Wirkung der Gene P, C, J, Ins, Can, G, B, V, Vir, Och und Flav. Hereditas 25:255–288CrossRefGoogle Scholar
  38. Lander ES, Green P, Abrahamson J, Barlow A, Daly MJ, Lincoln SE, Newburg L (1987) Mapmaker: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1:174–181PubMedCrossRefGoogle Scholar
  39. Lynch M, Walsh B (1998) Genetics and analysis of quantitative traits. Sinauer Associates, Sunderland 980pGoogle Scholar
  40. McClean PE, Lee PK, Otto C, Getps P, Bassett MJ (2002) Molecular and phenotypic mapping of genes controlling seed coat pattern and color in common bean (Phaseolus vulgaris L.). J Hered 93:148–152PubMedCrossRefGoogle Scholar
  41. Métais I, Hamon B, Jalouzot R, Peltier D (2002) Structure and level of genetic diversity in various bean types evidenced with microsatellite markers isolated from a genomic enriched library. Theor Appl Genet 104:1346–1352PubMedCrossRefGoogle Scholar
  42. Mollinari M, Margarido GRA, Vencovsky R, Garcia AAF (2009) Evaluation of algorithms used to order markers on genetic maps. Heredity 103:494–502PubMedCrossRefGoogle Scholar
  43. Moore SS, Hale P, Byrne K (1998) NCAM: a polymorphic microsatellite locus conserved across eutherian mammal species. Anim Genet 29:33–36PubMedCrossRefGoogle Scholar
  44. Murray J, Larsen J, Michaels TE, Schaafsma A, Vallejos CE, Pauls KP (2002) Identification of putative genes in bean (Phaseolus vulgaris) genomic (Bng) RFLP clones and their conversion to STSs. Genome 45:1013–1024PubMedCrossRefGoogle Scholar
  45. Nodari RO, Tsai SM, Gilbertson RL, Gepts P (1993) Towards an integrated map of common bean-2: development of a RFLP-based linkage map. Theor Appl Genet 85:513–520CrossRefGoogle Scholar
  46. Oliveira KM, Pinto LR, Marconi TG, Molinari M, Ulian EC, Chabregas SM, Falco MC, Burnquist W, Garcia AAF, Souza AP (2009) Characterization of new polymorphic functional markers for sugarcane. Genome 52:191–209PubMedCrossRefGoogle Scholar
  47. Pedrosa A, Porch T, Gepts P (2008) Standard nomenclature for common bean chromosomes and linkage groups. Annu Rept Bean Improv Coop 51:106–107Google Scholar
  48. Primmer CR, Raudsepp T, Chowdhary BP, Møller AP, Ellegren H (1997) Low frequency of microsatellites in the avian genome. Genome Res 7:471–482PubMedGoogle Scholar
  49. Rico C, Zadworny D, Kuhnlein U, Fitzgerald GJ (1993) Characterization of hypervariable microsatellite loci in the threespine stickleback Gasterosteus aculeatus. Mol Ecol 2:271–272PubMedCrossRefGoogle Scholar
  50. Rodríguez-Suárez C, Méndez-Vigo B, Pañeda A, Ferreira JJ, Giraldez R (2006) A genetic linkage map of Phaseolus vulgaris L. and localization of genes for specific resistance to six races of anthracnose (Colletotrichum lindemuthianum). Theor Appl Genet 114:713–722PubMedCrossRefGoogle Scholar
  51. Rudorf W (1958) Genetics of Phaseolus aborigineus Burkart. Proc X Intl Congr Genet 2:243 (Abstr.)Google Scholar
  52. Schlueter JA, Goicoechea JL, Collura K, Gill N, Lin J, Yu Y, Kudrna D, Zuccolo A, Vallejos CE, Muñoz-Torres M, Blair MW, Tohme J, Tomkins J, McClean P, Wing RA, Jackson SA (2008) BAC-end sequence analysis and a draft physical map of the common bean (Phaseolus vulgaris L.) genome. Trop Plant Biol 1:40–48CrossRefGoogle Scholar
  53. Schuelke M (2000) An economic method for the fluorescent labeling of PCR fragments. Nat Biotechnol 18:233–234PubMedCrossRefGoogle Scholar
  54. Shizhong X (2008) Quantitative trait locus mapping can benefit from segregation distortion. Genetics 180:2201–2208CrossRefGoogle Scholar
  55. Singh S, Nodari R, Gepts P (1991) Genetic diversity in cultivated common bean. II. Marker-based analysis of morphological and agronomic traits. Crop Sci 31:23–29CrossRefGoogle Scholar
  56. Ta’an B, Michaels TE, Pauls KP (2001) Identification of markers associated with quantitative traits in beans. Annu Rep Bean Improve Coop 44:9–10Google Scholar
  57. Tar’an B, Michaels TE, Pauls KP (2002) Genetic mapping of agronomic traits in common bean. Crop Sci 42:544–556CrossRefGoogle Scholar
  58. Tautz D, Renz M (1984) Simple sequence repeats are ubiquitous repetitive components of eukaryotic genomes. Nucleic Acids Res 12:4127–4137PubMedCrossRefGoogle Scholar
  59. Vallejos CE, Sakiyama NS, Chase CD (1992) A molecular marker-based linkage map of Phaseolus vulgaris L. Genetics 131:733–740PubMedGoogle Scholar
  60. Yaish MWF, Pérez de la Vega M (2003) Isolation of (GA)n microsatellite sequences and description of a predicted MADS-box sequence isolated from common bean (Phaseolus vulgaris L.). Genet Mol Biol 26:337–342CrossRefGoogle Scholar
  61. Yang GP, Shagai Maroof MA, Xu CG, Zhang Q, Biyashev RM (1994) Comparative analysis of microsatellite DNA polymorphism in landraces and cultivars of rice. Mol Gen Genet 245:187–194PubMedCrossRefGoogle Scholar
  62. Yu K, Park SJ, Poysa V (1999) Abundance and variation of microsatellite DNA sequences in beans (Phaseolus vulgaris and Vigna). Genome 42:27–34CrossRefGoogle Scholar
  63. Yu K, Park SJ, Poysa V, Gepts P (2000) Integration of simple sequence repeat (SSR) markers into a molecular linkage map of common bean (Phaseolus vulgaris L.). J Hered 91:429–434PubMedCrossRefGoogle Scholar
  64. Zhang X, Blair MW, Wang S (2008) Genetic diversity of Chinese common bean (Phaseolus vulgaris L.) landraces assessed with simple sequence repeat markers. Theor Appl Genet 117:629–664PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Tatiana de Campos
    • 1
  • Paula Rodrigues Oblessuc
    • 2
  • Danilo Augusto Sforça
    • 1
  • Juliana Morini Kupper Cardoso
    • 2
  • Renata Moro Baroni
    • 2
  • Adna Cristina Barbosa de Sousa
    • 1
  • Sérgio Augusto Morais Carbonell
    • 2
  • Alisson Fernando Chioratto
    • 2
  • Antonio Augusto Franco Garcia
    • 3
  • Luciana Benchimol Rubiano
    • 2
  • Anete Pereira de Souza
    • 1
    • 4
  1. 1.Centro de Biologia Molecular e Engenharia Genética (CBMEG)Universidade Estadual de Campinas (UNICAMP)CampinasBrazil
  2. 2.Centro de Pesquisa e Desenvolvimento de Recursos Genéticos Vegetais, Fazenda Santa Elisa, IACCampinasBrazil
  3. 3.Departamento de Genética, Escola Superior de Agricultura Luiz de Queiroz (ESALQ)Universidade de São Paulo (USP)PiracicabaBrazil
  4. 4.Departamento de Biologia Vegetal—Instituto de Biologia (IB)UNICAMPCampinasBrazil

Personalised recommendations