Molecular Breeding

, Volume 27, Issue 1, pp 77–92 | Cite as

Development of wild barley-derived DArT markers and their integration into a barley consensus map

  • B. P. Alsop
  • A. Farre
  • P. Wenzl
  • J. M. Wang
  • M. X. Zhou
  • I. Romagosa
  • A. Kilian
  • B. J. Steffenson
Article

Abstract

Wild barley-specific genomic libraries were developed for the purpose of creating a ‘comprehensive’ genomic representation of the primary Hordeum genepool capable of more robust genotyping of barley. In order to enrich for wild barley-specific sequences in the DArT libraries, suppression subtraction hybridization (SSH) was performed using cultivated barley as the subtraction driver and wild barley as the tester. Four doubled-haploid populations were genotyped with the comprehensive barley DArT array, including two from wild × cultivated crosses (Damon/Harrington and Shechem/Harrington) and two from cultivated × cultivated crosses (Albacete/Barbarrouse and TX9425/Naso Nijo). Analysis of genotyping data revealed that the SSH process was somewhat ineffective at enriching for unique sequences in this application of DArT marker development. However, the addition of markers derived from wild barley proved to be an effective means for increasing the number of polymorphic markers obtainable from a single DArT assay. Genetic maps of the four component populations were developed and 607 newly developed DArT markers were integrated with a barley consensus map to create a new synthetic map of the barley genome containing 3542 markers. This significantly increased the resolution of the consensus map and improved the power of the map to provide a reference for profiling genetic diversity within the primary Hordeum genepool. The improvement in the genotyping capability of the comprehensive DArT genomic representation and the higher resolution of the synthetic map facilitates an even greater flexibility of DArT markers to be utilized as a fast, high-throughput platform for molecular marker-based barley breeding.

Keywords

Hordeum vulgare subsp. spontaneum Synthetic map Diversity arrays technology 

Notes

Acknowledgments

This research was funded in part by the Lieberman-Okinow Endowment at the University of Minnesota. We are grateful to Edie Paul and Geneflow, Inc. for providing us with the use of Phenomap software for map synthesis. We are also grateful to J. Carling and M. Evers of Triticarte Pty. Ltd. (DArT) for their efforts in array development and genotyping. We thank Joy K. Roy for providing data used in selection of wild barley accessions for array development.

Supplementary material

11032_2010_9415_MOESM1_ESM.xls (5.5 mb)
Supplementary material 1 (XLS 5634 kb)
11032_2010_9415_MOESM2_ESM.tif (29.8 mb)
Supplementary material 2 (TIFF 30518 kb)
11032_2010_9415_MOESM3_ESM.xls (602 kb)
Supplementary material 3 (XLS 602 kb)

References

  1. Akbari M, Wenzl P, Caig V, Carling J, Xia L, Yang S, Uszynski G, Mohler V, Lehmensiek A, Kuchel H, Hayden MJ, Howes N, Sharp P, Vaughan P, Rathmell B, Huttner E, Kilian A (2006) Diversity arrays technology (DArT) for high-throughput profiling of the hexaploid wheat genome. Theor Appl Genet 113:1409–1420CrossRefPubMedGoogle Scholar
  2. Baum M, Grando S, Backes G, Jahoor A, Sabbagh A, Ceccarelli S (2003) QTLs for agronomic traits in the Mediterranean environment identified in recombinant inbred lines of the cross ‘Arta’ x H. spontaneum 41–1. Theor Appl Genet 7:1215–1225CrossRefGoogle Scholar
  3. Davies PA (2003) Barley isolated microspore culture. In: Maluszynski M, Kasha KJ, Forster BP, Szarejko I (eds) Doubled haploid production in crop plants. A manual. Kluwer, DordrechtGoogle Scholar
  4. Ellis RP, Forster BP, Robinson D, Handley LL, Gordon DC, Russell JR, Powell W (2000) Wild barley: a source of genes for crop improvement in the 21st century? J Exp Bot 51:9–17CrossRefPubMedGoogle Scholar
  5. Farre A (2008) Linkage map construction for the Albacete x Barberousse DH population in barley (Hordeum vulgare L.). Master of Science Thesis. Agronomic Mediterranean Institute of Zaragoza - CIHEAM, Universitat de Lleida, SpainGoogle Scholar
  6. Fetch TGJ, Steffenson BJ, Nevo E (2003) Diversity and sources of multiple disease resistance in Hordeum spontaneum. Plant Dis 7:1439–1448CrossRefGoogle Scholar
  7. Górny AG (2001) Variation in utilization efficiency and tolerance to reduced water and nitrogen supply among wild and cultivated barleys. Euphytica 117:59–66CrossRefGoogle Scholar
  8. Graner A, Jahoor A, Schondelmaier J, Siedler H, Pillen K, Fischbeck G, Wenzel G, Herrmann RG (1991) Construction of an RFLP map of barley. Theor Appl Genet 83:250–256CrossRefGoogle Scholar
  9. Hearnden PR, Eckermann PJ, McMichael GL, Hayden MJ, Eglinton JK, Chalmers KJ (2007) A genetic map of 1000 SSR and DArT markers in a wide barley cross. Theor Appl Genet 115:383–391CrossRefPubMedGoogle Scholar
  10. Heun M, Kennedy AE, Anderson JA, Lapitan NLV, Sorrells ME, Tanksley SD (1991) Construction of a restriction fragment length polymorphism map for barley (Hordeum vulgare). Genome 34:437–447Google Scholar
  11. Jaccoud D, Peng K, Feinstein D, Kilian A (2001) Diversity Arrays: a solid state technology for sequence information independent genotyping. Nucl Acids Res 29:e25CrossRefPubMedGoogle Scholar
  12. James KE, Schneider H, Ansell SW, Evers M, Robba L, Uszynski G, Pedersen N, Newton AE, Russell SJ, Vogel JC (2008) Diversity arrays technology (DArT) for pan-genomic evolutionary studies of non-model organisms. PLoS ONE 3Google Scholar
  13. Karakousis A, Gustafson JP, Chalmers KJ, Barr AR, Langridge P (2003) A consensus map of barley integrating SSR, RFLP, and AFLP markers. Aust J Agric Res 54:1173–1185CrossRefGoogle Scholar
  14. Kleinhofs A, Kilian A, Maroof MAS, Biyashev RM, Hayes P, Chen FQ, Lapitan N, Fenwick A, Blake TK (1993) A molecular, isozyme and morphological map of the barley (Hordeum vulgare) genome. Theor Appl Genet 86:705–712CrossRefGoogle Scholar
  15. Lacasa-Benito I, Cuadrado A, Muñoz P, Moralejo M, Cistue L, Castillo A, Vallés P, Romagosa I (2005) Molecular and cytological study of the reciprocal translocation present in the drought stress resistant barley “Albacete”. Interdrought II, RomeGoogle Scholar
  16. Langridge P, Karakousis A, Collins N, Kretschmer J, Manning S (1995) A consensus linkage map of barley. Mol Breed 1:389–395CrossRefGoogle Scholar
  17. Lincoln SE, Lander ES (1992) Systematic detection of errors in genetic linkage data. Genomics 14:604–610CrossRefPubMedGoogle Scholar
  18. Marcel TC, Varshney RK, Barbieri M, Jafary H, de Kock MJD, Graner A, Niks RE (2007) A high-density consensus map of barley to compare the distribution of QTLs for partial resistance to Puccinia hordei and of defence gene homologues. Theor Appl Genet 4:487–500CrossRefGoogle Scholar
  19. Nevo E, Baum B, Beiles A, Johnson DA (1998) Ecological correlates of RAPD DNA diversity of wild barley, Hordeum spontaneum, in the Fertile Crescent. Genet Resour Crop Evol 45:151–159CrossRefGoogle Scholar
  20. Olivera P (2008) Genotypic and phenotypic diversity of Sharon goatgrass (Aegilops sharonensis) and genetics of resistance to wheat fungal diseases. Ph.D. Thesis, University of Minnesota, Minnesota, United StatesGoogle Scholar
  21. Pickering RA, Fautrier AG (1993) Anther culture-derived regenerants from Hordeum vulgare × Hordeum bulbosum crosses. Plant Breed 110:41–47CrossRefGoogle Scholar
  22. Pillen K, Zacharias A, Leon J (2003) Advanced backcross QTL analysis in barley (Hordeum vulgare L.). Theor Appl Genet 107:340–352CrossRefPubMedGoogle Scholar
  23. Pillen K, Zacharias A, Leon J (2004) Comparative AB-QTL analysis in barley using a single exotic donor of Hordeum vulgare ssp. spontaneum. Theor Appl Genet 8:1591–1601CrossRefGoogle Scholar
  24. Qi X, Stam P, Lindhout P (1996) Comparison and integration of four barley genetic maps. Genome 39:379–394CrossRefPubMedGoogle Scholar
  25. Qi X, Stam P, Lindhout P (1998) Use of locus-specific AFLP markers to construct a high-density molecular map in barley. Theor Appl Genet 96:376–384CrossRefGoogle Scholar
  26. Ramsay L, Macaulay M, degli Ivanissevich S, MacLean K, Cardle L, Fuller J, Edwards KJ, Tuvesson S, Morgante M, Massari A, Maestri E, Marmiroli N, Sjakste T, Ganal M, Powell W, Waugh R (2000) A simple sequence repeat-based linkage map of barley. Genetics 156:1997–2005PubMedGoogle Scholar
  27. Rasmusson DC, Phillips RL (1997) Plant breeding progress and genetic diversity from de novo variation and elevated epistasis. Crop Sci 37:303–310CrossRefGoogle Scholar
  28. Rostoks N, Mudie S, Cardle L, Russell J, Ramsay L, Booth A, Svensson JT, Wanamaker SI, Walia H, Rodriguez EM, Hedley PE, Liu H, Morris J, Close TJ, Marshall DF, Waugh R (2005) Genome-wide SNP discovery and linkage analysis in barley based on genes responsive to abiotic stress. Mol Genet Genomics 274:515–527CrossRefPubMedGoogle Scholar
  29. Steffenson BJ, Olivera P, Roy JK, Jin Y, Smith KP, Muehlbauer GJ (2007) A walk on the wild side: mining wild wheat and barley collections for rust resistance genes. Aust J Agric Res 58:532–544CrossRefGoogle Scholar
  30. Stein N, Herren G, Keller B (2001) A new DNA extraction method for high throughput markers analysis in a large genome species such as Triticum aestivum. Plant Breed 120:35435–35436CrossRefGoogle Scholar
  31. Stein N, Prasad M, Scholz U, Thiel T, Zhang H, Wolf M, Kota R, Varshney RK, Perovic D, Grosse I, Graner A (2007) A 1, 000-loci transcript map of the barley genome: new anchoring points for integrative grass genomics. Theor Appl Genet 114:823–839CrossRefPubMedGoogle Scholar
  32. Van Ooijen JW (2006) JoinMap 4.0 Software for the calculation of genetic linkage maps in experimental populations. Kyazma B.V., The NetherlandsGoogle Scholar
  33. Van Ooijen JW, Voorrips RE (2001) JoinMap 3.0, Software for the calculation of genetic linkage maps. Plant Research International, The NetherlandsGoogle Scholar
  34. Van Os H, Stam P, Visser RGF, van Eck HJ (2005) RECORD: a novel method for ordering loci on a genetic linkage map. Theor Appl Genet 112:30–40CrossRefPubMedGoogle Scholar
  35. Varshney RK, Marcel TC, Ramsay L, Russell J, Roder MS, Stein N, Waugh R, Langridge P, Niks RE, Graner A (2007) A high density barley microsatellite consensus map with 775 SSR loci. Theor Appl Genet 114:1091–1103CrossRefPubMedGoogle Scholar
  36. von Korff M, Wang H, Leon J, Pillen K (2004) Development of candidate introgression lines using an exotic barley accession (Hordeum vulgare ssp. spontaneum) as donor. Theor Appl Genet 109:1736–1745CrossRefGoogle Scholar
  37. von Korff M, Wang H, Leon J, Pillen K (2005) AB-QTL analysis in spring barley. I. Detection of resistance genes against powdery mildew, leaf rust and scald introgressed from wild barley. Theor Appl Genet 111:583–590CrossRefGoogle Scholar
  38. von Korff M, Wang H, Leon J, Pillen K (2006) AB-QTL analysis in spring barley: II. Detection of favourable exotic alleles for agronomic traits introgressed from wild barley (H. vulgare ssp. spontaneum). Theor Appl Genet 112:1221–1231CrossRefGoogle Scholar
  39. Voorrips RE (2002) MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered 93:77–78CrossRefPubMedGoogle Scholar
  40. Wenzl P, Carling J, Kudrna D, Jaccoud D, Huttner E, Kleinhofs A, Kilian A (2004) Diversity Arrays Technology (DArT) for whole-genome profiling of barley. Proc Natl Acad Sci USA 101:9915–9920CrossRefPubMedGoogle Scholar
  41. Wenzl P, Li H, Carling J, Zhou M, Raman H, Paul E, Hearnden P, Maier C, Xia L, Caig V, Ovesna J, Cakir M, Poulsen D, Wang J, Raman R, Smith KP, Muehlbauer GJ, Chalmers KJ, Kleinhofs A, Huttner E, Kilian A (2006) A high-density consensus map of barley linking DArT markers to SSR, RFLP and STS loci and agricultural traits. BMC Genomics 7:206CrossRefPubMedGoogle Scholar
  42. Wittenberg AH, van der Lee T, Cayla C, Kilian A, Visser RG, Schouten HJ (2005) Validation of the high-throughput marker technology DArT using the model plant Arabidopsis thaliana. Mol Genet Genomics 274:30–39CrossRefPubMedGoogle Scholar
  43. Xia L, Peng K, Yang S, Wenzl P, de Vicente MC, Fregene M, Kilian A (2005) DArT for high-throughput genotyping of Cassava (Manihot esculenta) and its wild relatives. Theor Appl Genet 110:1092–1098CrossRefPubMedGoogle Scholar
  44. Yang S, Pang W, Ash G, Harper J, Carling J, Wenzl P, Huttner E, Zong X, Kilian A (2006) Low level of genetic diversity in cultivated Pigeonpea compared to its wild relatives is revealed by diversity arrays technology. Theor Appl Genet 113:585–595CrossRefPubMedGoogle Scholar
  45. Yun SJ, Gyenis L, Hayes PM, Matus I, Smith KP, Steffenson BJ, Muehlbauer GJ (2005) Quantitative trait loci for multiple disease resistance in wild barley. Crop Sci 45:2563–2572CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • B. P. Alsop
    • 1
  • A. Farre
    • 3
  • P. Wenzl
    • 2
  • J. M. Wang
    • 4
  • M. X. Zhou
    • 5
  • I. Romagosa
    • 3
  • A. Kilian
    • 2
  • B. J. Steffenson
    • 1
  1. 1.Department of Plant PathologyUniversity of MinnesotaSt. PaulUSA
  2. 2.Triticarte P/L and DArT P/LYarralumla, CanberraAustralia
  3. 3.Centre UdL-IRTAUniversidad de LleidaLleidaSpain
  4. 4.Institute of Crop and Nuclear Technology UtilizationZhejiang Academy of Agricultural SciencesHangzhouChina
  5. 5.Tasmanian Institute of Agricultural ResearchUniversity of TasmaniaKings MeadowsAustralia

Personalised recommendations