Molecular Breeding

, Volume 26, Issue 1, pp 39–49 | Cite as

Association mapping of late maturity α-amylase (LMA) activity in a collection of synthetic hexaploid wheat

Article

Abstract

Late maturity α-amylase (LMA) is a genetic defect of wheat which results in the production of α-amylase, shown as substandard falling numbers, in the absence of preharvest rain and under cool temperatures during ripening. The present study is an attempt to use a whole-genome scan with DArT markers to identify chromosomal regions influencing LMA in synthetic hexaploid wheat (SHW). A high heritability estimate of 86.6% was calculated for LMA phenotype measured as optical density in a collection of 91 SHWs. Linkage disequilibrium extended up to 10 cM, and with controls for false positives, significant markers were detected at the chromosome 7B region previously linked to LMA in bread wheat, but not at the chromosome 3B region. Of potentially great interest is a region on chromosome 6B, which was identified as having a significant association with LMA phenotypes in the SHW accessions. Previous investigations suggested existence of an LMA gene on the long arm of 6B, but this is the first time it has been mapped to lie within the centromeric region of chromosome 6B, a region that harbours the Amy-1 genes and whose expression governs activity of the high pI α-amylase isoenzymes.

Keywords

Synthetic hexaploid wheat Late maturity α-amylase DArT markers Association mapping 

Notes

Acknowledgments

This work was supported by grants from the Grains Research and Development Corporation (GRDC) and NSW Department of Primary Industries. The authors acknowledge contributions made by Francis Ogbonnaya to the CIMMYT-Australian Germplasm Evaluation (CAGE) suite of projects.

Supplementary material

11032_2009_9375_MOESM1_ESM.doc (407 kb)
Supplementary material 1 (DOC 407 kb)
11032_2009_9375_MOESM2_ESM.xls (30 kb)
Supplementary material 2 (XLS 30 kb)

References

  1. Andreescu C, Avendano S, Brown SR, Hassen A, Lamont SJ, Dekkers JCM (2007) Linkage disequilibrium in related breeding lines of chickens. Genetics 177:2161–2169CrossRefPubMedGoogle Scholar
  2. Barrett JC, Fry B, Maller J, Daly MJ (2005) Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 21:263–265CrossRefPubMedGoogle Scholar
  3. Bradbury PJ, Zhang Z, Kroon DE, Casstevens TM, Ramdoss Y, Buckler ES (2007) TASSEL: soft ware for association mapping of complex traits in diverse samples. Bioinformatics 23:2633–2635CrossRefPubMedGoogle Scholar
  4. Breseghello F, Sorrells ME (2006) Association mapping of kernel size and milling quality in wheat (Triticum aestivum L.) cultivars. Genetics 172:1165–1177CrossRefPubMedGoogle Scholar
  5. Cane K, Spackman M, Eagles HA (2004) Puroindoline genes and their effects on grain quality traits in southern Australian wheat cultivars. Aust J Agric Res 55:89–95CrossRefGoogle Scholar
  6. Chao S, Zhang W, Dubcovsky J, Sorrells M (2007) Evaluation of genetic diversity and genome-wide linkage disequilibrium among US wheat (Triticum aestivum L.) germplasm representing different market classes. Crop Sci 47:1018–1030CrossRefGoogle Scholar
  7. Chen J, Lan P, Tarr A, Yan YM, Francki M, Appels R, Ma W (2007) Matrix-assisted laser desorption/ionization time-of-flight based wheat gliadin protein peaks are useful molecular markers for wheat genetic study. Rapid Commun Mass Spectrom 21:2913–2917CrossRefPubMedGoogle Scholar
  8. Crossa J, Burgueno J, Dreisigacker S, Vargas M, Herrera-Foessel SA, Lillemo M, Singh RP, Trethowan R, Warburton M, Franco J, Reynolds M, Crouch JH, Ortiz R (2007) Association analysis of historical bread wheat germplasm using additive genetic covariance of relatives and population structure. Genetics 177:1889–1913CrossRefPubMedGoogle Scholar
  9. Dreisigacker S, Arief V, DeLacy I, Davenport G, Manes Y, Reynolds M, Ravi S, Dieters M, Crossa J (2008) Patterns of linkage disequilibrium in multiple populations. In: Appels R, Eastwood R, Lagudah E, Langridge P, Mackay M, McIntyre L, Sharp P (eds) Proceedings of 11th international wheat genet symposium. Sydney University Press, Brisbane, pp 1–5. http://hdl.handle.net/2123/3326
  10. Ellis MH, Spielmeyer W, Gale KR, Rebetzke GJ, Richards RA (2002) ‘‘Perfect’’ markers for Rht-B1b and Rht-D1b dwarfing genes in wheat. Theor Appl Genet 105:1038–1042CrossRefPubMedGoogle Scholar
  11. Ersoz ES, Yu J, Buckler ES (2009) Applications of linkage disequilibrium and association mapping in maize. In: Kriz AL, Larkins BA (eds) Molecular genetic approaches to maize improvement, biotechnology in agriculture and forestry, vol 63. Springer, BerlinCrossRefGoogle Scholar
  12. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620CrossRefPubMedGoogle Scholar
  13. Farrell AD, Kettlewell PS (2008) The effect of temperature shock and grain morphology on alpha-amylase in developing wheat grain. Ann Bot 102:287–293CrossRefPubMedGoogle Scholar
  14. Francki MG, Walker E, Crawford AC, Broughton S, Ohm HW, Barclay I, Wilson RE, McLean R (2009) Comparison of genetic and cytogenetic maps of hexaploid wheat (Triticum aestivum L.) using SSR and DArT markers. Mol Genet Genomics 281:181–191CrossRefPubMedGoogle Scholar
  15. Gale MD (1975) High α-amylase—breeding and genetical aspects of the problem. Cereal Res Commun 4:231–243Google Scholar
  16. Gale MD, Flintham JE, Arthur ED (1983) Alpha-amylase production in the late stages of grain development: an early sprouting damage risk? In: Kruger EJ, LaBerge ED (eds) Third international symposium on preharvest sprouting in cereals. Westview Press, Boulder, pp 29–35Google Scholar
  17. Gale MD, Scott PA, Law CN, Ainsworth CC, Hollins TW, Worland AJ (1984) An α-amylase gene from Aegilops ventricosa transferred to bread wheat together with a factor for eyespot resistance. Heredity 52:431–435CrossRefGoogle Scholar
  18. Hardy OJ, Vekemans X (2002) SPAGeDi: a versatile computer program to analyse spatial genetic structure at the individual or population levels. Mol Ecol Notes 2:618–620CrossRefGoogle Scholar
  19. Imtiaz M, Ogbonnaya FC, Oman J, van Ginkel M (2008) Characterization of quantitative trait loci controlling genetic variation for preharvest sprouting in synthetic backcross-derived wheat lines. Genetics 178:1725–1736CrossRefPubMedGoogle Scholar
  20. Kunert A, Naz AA, Dedeck O, Pillen K, Leon J (2007) AB-QTL analysis in winter wheat: I. Synthetic hexaploid wheat (T. turgidum ssp. dicoccoides · T. tauschii) as a source of favourable alleles for milling and baking quality traits. Theor Appl Genet 115:683–695CrossRefPubMedGoogle Scholar
  21. Liu RH, Meng JL (2003) MapDraw: a Microsoft Excel macro for drawing genetic linkage maps based on given genetic linkage data. Heraditas (Beijing) 25:317–321Google Scholar
  22. Maccaferri M, Sanguineti MC, Noli E, Tuberosa R (2005) Population structure and long-range linkage disequilibrium in a durum wheat elite collection. Mol Breed 15:271–289CrossRefGoogle Scholar
  23. Maccaferri M, Sanguineti MC, Natoli E, Araus-Ortega JL, Bensalem M et al (2006) A panel of elite accessions of durum wheat (Triticum durum Desf.) suitable for association mapping studies. Plant Genet Resour 4:79–85CrossRefGoogle Scholar
  24. Mares DJ, Gale MD (1990) Control of α-amylase synthesis in wheat grains. In: Ringlund K, Mosleth E, Mares EJ (eds) Proceedings of the 5th international symposium on pre-harvest sprouting in cereals. Westview Press, Boulder, Co., pp 183–194Google Scholar
  25. Mares DJ, Mrva K (2008a) Genetic variation for quality traits in synthetic wheat germplasm. Aust J Agric Res 59:406–412CrossRefGoogle Scholar
  26. Mares DJ, Mrva K (2008b) Late-maturity a-amylase: low falling number in wheat in the absence of preharvest sprouting. J Cereal Sci 47:6–17CrossRefGoogle Scholar
  27. Masojc P, Milczarski P (2009) Relationship between QTLs for pre-harvest sprouting and alpha-amylase activity in rye grain. Mol Breed 23:75–84CrossRefGoogle Scholar
  28. Mrva K, Mares DJ (1996) Expression of late maturity α-amylase in wheat containing gibberellic acid insensitivity genes. Euphytica 88:68–76Google Scholar
  29. Mrva K, Mares DJ (1999) Regulation of high pI α-amylase synthesis in wheat aleurone by a gene (s) located on chromosome 6B. Euphytica 109:17–23CrossRefGoogle Scholar
  30. Mrva K, Mares DJ (2001) Quantitative trait locus analysis of late maturity a-amylase in wheat using the doubled haploid population Cranbrook × Halberd. Aust J Agric Res 52:1267–1273CrossRefGoogle Scholar
  31. Mrva K, Mares DJ (2002) Screening methods and identification of QTLs associated with late maturity α-amylase in wheat. Euphytica 126:55–59CrossRefGoogle Scholar
  32. Mrva K, Mares DJ, Cheong J (2008) Genetic mechanisms involved in late maturity α-amylase in wheat. In: Appels R, Eastwood R, Lagudah E, Langridge P, Mackay M, McIntyre L, and Sharp P (eds) The 11th international wheat genetics symposium proceedings. Sydney University Press, Sydney. http://hdl.handle.net/2123/3235
  33. Mrva K, Cheong J, Yu B, Law HY, Mares D (2009) Late maturity a-amylase in synthetic hexaploid wheat. Euphytica 168:403–411CrossRefGoogle Scholar
  34. Mujeeb-Kazi A, Rosas V, Roldan S (1996) Conservation of the genetic variation of Triticum tauschii (Coss.) Schmalh. (Aegilops squarrosa auct. non L.) in synthetic hexaploid wheats (T. turgidum L. s.lat, ×T. tauschii; 2n = 6× = 42, AABBDD) and its potential utilization for wheat improvement. Genet Res Crop Evol 43:129–134CrossRefGoogle Scholar
  35. Myles S, Peiffer J, Brown PJ, Ersoz ES, Zhang Z, Costich DE, Buckler ES (2009) Association mapping: critical considerations shift from genotyping to experimental design. Plant Cell 21:2194–2202CrossRefPubMedGoogle Scholar
  36. Ogbonnaya FC, Seah S, López-Brana I, Jahier J, Delibes A, Lagudah ES (2001) Molecular-genetic characterisation of a new nematode resistance gene in wheat. Theor Appl Genet 102:623–629CrossRefGoogle Scholar
  37. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959PubMedGoogle Scholar
  38. Saxena R, Voight BF et al (2007) Genome-wide association analysis identifies loci for type 2 diabetes and triglyceride levels. Science 316:1331–1336CrossRefPubMedGoogle Scholar
  39. Somers DJ, Isaac P, Edwards K (2004) A high-density microsatellite consensus map for bread wheat (Triticum aestivum L.). Theor Appl Genet 109:1105–1114CrossRefPubMedGoogle Scholar
  40. Van Berloo R (2008) Computer note: GGT 2.0: versatile software for visualization and analysis of genetic data. J Hered 99:232–236CrossRefPubMedGoogle Scholar
  41. Waugh R, Jannink JL, Muller K, Ramsay L (2009) The emergence of whole genome association scans in barley. Curr Opin Plant Biol 12:1–5CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • L. C. Emebiri
    • 1
  • J. R. Oliver
    • 1
  • K. Mrva
    • 2
  • D. Mares
    • 2
  1. 1.EH Graham Centre for Agricultural InnovationWagga WaggaAustralia
  2. 2.School of Agriculture, Food & WineUniversity of AdelaideGlen OsmondAustralia

Personalised recommendations