Molecular Breeding

, Volume 24, Issue 4, pp 361–374 | Cite as

A meta–QTL analysis of disease resistance traits of Theobroma cacao L.

  • C. Lanaud
  • O. Fouet
  • D. Clément
  • M. Boccara
  • A. M. Risterucci
  • S. Surujdeo-Maharaj
  • T. Legavre
  • X. Argout


Theobroma cacao, is a tropical understorey tree that is a major economic resource to several tropical countries. However, the crop is under increased threat from several diseases that are responsible for 30% loss of harvest globally. Although QTL data related to the genetic determinism of disease resistance exist in cocoa, QTL mapping experiments are heterogeneous, thus making comparative QTL mapping essential for marker assisted selection (MAS). Sixteen QTL experiments were analysed, and the 76 QTLs detected were projected on a progressively established consensus map. Several hot spots, with QTLs related to different Phytophthora species and other diseases, were observed. The likely number of “real” QTLs was estimated by using a meta-analysis implemented in BioMercator software. There was a twofold reduction in average confidence interval observed when compared to the confidence interval of individual QTLs. This alternative approach confirms the existence of several sources of resistance to different diseases of cocoa which could be cumulated in new varieties to increase the sustainability of cocoa resistance using MAS strategies.


Meta-analysis QTL Genetic-map Theobroma cacao Disease resistance Phytophthora resistance 



We thank “Agropolis foundation” for the financial support it provided for this work.


  1. Akaike H (1973) Information theory and an extension of the maximum likelihood principle. 2nd International Symposium on Information Theory: 267–281Google Scholar
  2. Akaike H (1992) Information theory and an extension of the maximum likelihood principle. In: Kotz S, Johnson NL (eds) Breakthroughs in statistics, vol 1. Springer-Verlag, London, pp 610–624Google Scholar
  3. Albuquerque PSB, Figueira A (2004) Genetic mapping and identification of genomic regions associated with witches’ broom resistance, derived from alternative sources from the Brazilian Amazon (CAB genotypes). INGENIC Newsl 9:39–42Google Scholar
  4. Allison DB, Heo M (1998) Meta-analysis of linkage data under worst-case conditions: a demonstration using the human OB region. Genetics 148:859–865PubMedGoogle Scholar
  5. APG II (2003) An update of the angiosperm phylogeny group classification for the orders and families of flowering plants. Bot J Linn Soc 141:399–436. doi: 10.1046/j.1095-8339.2003.t01-1-00158.x CrossRefGoogle Scholar
  6. Arcade A, Labourdette A, Falque M, Mangin B, Chardon F, Charcosset A, Joets J (2004) BioMercator: integrating genetic maps and QTL towards discovery of candidate genes. Bioinformatics 20(14):2321–2326. doi: 10.1093/bioinformatics/bth230 CrossRefGoogle Scholar
  7. Argout X, Fouet O, Wincker P, Gramacho K, Legavre T, Sabau X, Risterucci AM, Da Silva C, Cascardo J, Allegre M, Kuhn D, Verica J, Courtois B, Loor G, Babin R, Sounigo O, Ducamp M, Guiltinan M, Ruiz M, Alemanno L, Machado R, Phillips W, Schnell R, Gilmour M, Rosenquist E, Butler D, Maximova S, Lanaud C (2008) Towards the understanding of the cocoa transcriptome: production and analysis of an exhaustive dataset of ESTs of Theobroma cacao L. generated from various tissues and under various conditions. BMC genomics 9:512Google Scholar
  8. Argout X, Ruiz M, Rouard M, Turnbull C, Lanaud C, Rosenquist E, Courtois B (2006) Cocoagen db: a web portal for crossing cocoa phenotypic, genetic and genomic data from ICGD and Tropgene db database. 15th International Cocoa Research Conference, Oct. 2006, San Jose (Costa Rica)Google Scholar
  9. Belsky JM, Seibert S (2003) Cultivating cacao: implications of sun-grown cacao on local food security and environmental sustainability. Agric Human Values 20:277–285. doi: 10.1023/A:1026100714149 CrossRefGoogle Scholar
  10. Borrone JW, Kuhn DN, Schnell RJ (2004) Isolation, characterization, and development of WRKY genes as useful markers in Theobroma cacao. Theor Appl Genet 109:495–507. doi: 10.1007/s00122-004-1662-4 CrossRefPubMedGoogle Scholar
  11. Bowers JH, Bailey BA, Hebbar PK, Sanogo S, Lumsden RD (2001) The impact of plant diseases on world chocolate production. Online. Plant Health Prog. doi: 10.1094/PHP-2001-0709-01-RV
  12. Brown JS, Schnell RJ, Motamayor JC, Lopes U, Kuhn DN, Borrone JW (2005) Resistance gene mapping for witches`broom disease in Theobroma cacao L. in an F2 population using SSR markers and candidate genes. J Am Soc Hortic Sci 130:366–373Google Scholar
  13. Brown JS, Phillips-Mora W, Power EJ, Krol C, Cervantes-Martinez C, Motamayor JC, Schnell RJ (2007) Mapping QTLs for resistance to frosty pod and black pod diseases and horticultural traits in Theobroma cacao. Crop Sci 47:1851–1858. doi: 10.2135/cropsci2006.11.0753 CrossRefGoogle Scholar
  14. Chardon F, Virlon B, Moreau L, Falque M, Joets J, Decousset L, Murigneux A, Charcosset A (2004) Genetic architecture of flowering time in maize as inferred from quantitative trait loci meta-analysis and synteny conservation with the rice genome. Genetics 168:2169–2185. doi: 10.1534/genetics.104.032375 CrossRefPubMedGoogle Scholar
  15. Cilas C, Despreaux D (eds) (2004) Improvement of cocoa tree resistance to Phytophthora diseases. Collection repères, CIRAD, pp 171–174Google Scholar
  16. Clément D, Risterucci AM, Motamayor JC, N’Goran J, Lanaud C (2003a) Mapping QTLs for yield components, vigor and resistance to Phytophthora palmivora in Theobroma cacao L. Genome 46:204–212. doi: 10.1139/g02-125 CrossRefPubMedGoogle Scholar
  17. Clément D, Risterucci AM, Motamayor JC, N’Goran J, Lanaud C (2003b) Mapping quantitative trait loci for bean traits and ovule number in Theobroma cacao L. Genome 46:103–111. doi: 10.1139/g02-118 CrossRefPubMedGoogle Scholar
  18. Crouzillat D, Lercetau E, Pétiard V, Morera J, Rodríguez H, Walker D, Phillips W, Ronning C, Schnell R, Osei J, Fritz P (1996) Theobroma cacao L: a genetic linkage map and quantitative trait loci analysis. Theor Appl Genet 93:205–214CrossRefGoogle Scholar
  19. Crouzillat D, Ménard B, Mora A, Phillips W, Pétiard V (2000a) Quantitative trait loci analysis in Theobroma cacao L. using molecular markers. Euphytica 114:13–23. doi: 10.1023/A:1003892217582 CrossRefGoogle Scholar
  20. Crouzillat D, Phillips W, Fritz PJ, Pétiard V (2000b) Quantitative trait loci analysis in Theobroma cacao L. using molecular markers. Inheritance of polygenic resistance to Phytophthora palmivora in two related cacao populations. Euphytica 114:25–36. doi: 10.1023/A:1003994212394 CrossRefGoogle Scholar
  21. Crouzillat D, Rigoreau M, Cabigliera M, Alvarez M, Bucheli P, Pétiard V (2003) QTL studies carried out for agronomic, technological and quality traits of cacao in Ecuador. 14th International Cocoa Conference, 13–18 October, Accra, Ghana: Cocoa Producers, AllianceGoogle Scholar
  22. Darvasi A, Soller M (1997) A simple method to calculate resolving power and confidence interval of QTL map location. Behav Genet 27:125–132. doi: 10.1023/A:1025685324830 CrossRefPubMedGoogle Scholar
  23. Djiekpor EK, Goka K, Lucas P, Partiot M (1981) Brown rot of cocoa pod due to Phytophthora species in Togo, evaluation and control strategy. Cafe, Cacao, The (Paris) 25:263–268Google Scholar
  24. Etzel C, Guerra R (2003) Meta-analysis of genetic-linkage of quantitative trait loci. Am J Hum Genet 71:56–65. doi: 10.1086/341126 CrossRefGoogle Scholar
  25. Evans HC (2002) Invasive neotripical pathogens of tree crops. Vol 2 micromycetes. In: Watling R, Frankland J, Ainsworth M, Isaac S, Robinson C (eds) Tropical mycology. CABI Publishing, Wallingford, pp 83–112Google Scholar
  26. Evans HC (2007) Cacao diseases—the trilogy revisited. Phytopathology 97:1640–1643. doi: 10.1094/PHYTO-97-12-1640 CrossRefPubMedGoogle Scholar
  27. Faleiro FG, Queiroz VT, Lopes UV, Guimarães CT, Pires JL, Yamada MM, Araújo IS, Pereira MG, Souza Filho GA, Brown JS, Schnell R, Ferreira CF, Barros EG, Moreira MA (2006) Mapeamento genético molecular do cacaueiro (Theobroma cacao L.) e QTLs associados à resistência à vassoura-de-bruxa. Euphytica 149:227–235. doi: 10.1007/s10681-005-9070-7 CrossRefGoogle Scholar
  28. Figueira A, Paulo S, Albuquerque B, Gildemberg A Leal Jr (2006) Genetic mapping and differential gene expression of Brazilian alternative resistance sources to witches’ broom (causal agent Crinipellis perniciosa). 15th International Cocoa Research Conference, October. 2006, San Jose, Costa Rica: Cocoa Producers, Alliance (in Press)Google Scholar
  29. Flament MH (1998) Cartographie génétique de facteurs impliqués dans la résistance du cacaoyer (Theobroma cacao L.). à. Phytophthora megakarya et à Phytophthora palmivora.Thèse de doctorat soutenue le 21 décembre 1998. ENSAM— ED biologie intégrative, MontpellierGoogle Scholar
  30. Flament MH, Kébé I, Clément D, Pieretti I, Risterucci AM, N’Goran JAK, Cilas C, Despéux D, Lanaud C (2000) Genetic mapping of resistance factors to Phytophthora palmivora in cocoa. Genome 44:79–85. doi: 10.1139/gen-44-1-79 CrossRefGoogle Scholar
  31. Fulton RH (1989) The cacao disease trilogy: black pod, monilia pod rot and witches’ broom. Plant Dis 73:601–603. doi: 10.1094/PD-73-0601 CrossRefGoogle Scholar
  32. Goffinet B, Gerber S (2000) Quantitative trait loci: a meta-analysis. Genetics 155:463–473PubMedGoogle Scholar
  33. Guiltinan MJ, Verica J, Zhang D, Figueira A (2008) Genomics of Theobroma cacao, ‘the food of the gods’. In: Moore PH, Ming R (eds) Genomics of tropical crop plants. Springer-Verlag, Berlin, Heidelberg, pp 145–170CrossRefGoogle Scholar
  34. Guo B, Sleper DA, Lu P, Shannon JG, Nguyen HT, Arelli PR (2006) QTLs associated with resistance to soybean cyst nematode in soybean: meta-analysis of QTL locations. Crop Sci 46:595–602. doi: 10.2135/cropsci2005.04-0036-2 CrossRefGoogle Scholar
  35. Iwaro AD, Butler DR, Eskes AB (2006) Sources of resistance to Phytophthora pod rot at the International Cocoa Genebank, Trinidad. Genet Resour Crop Evol 53:99–109. doi: 10.1007/s10722-004-1411-1 CrossRefGoogle Scholar
  36. Jansen RC (1996) Complex plant traits: time for polygenic analysis. Trends Plant Sci 1:89–94. doi: 10.1016/S1360-1385(96)80040-9 CrossRefGoogle Scholar
  37. Keane PJ (1992) Diseases and pests of cocoa: an overview. Cocoa pest and disease management in Southeast Asia and Australisia. FAO Plant Prot Prot Pap 112:1–12Google Scholar
  38. Kearsey M, Farquhar A (1998) QTL analysis in plants; where are we now? Heredity 80:137–142. doi: 10.1046/j.1365-2540.1998.00500.x CrossRefPubMedGoogle Scholar
  39. Kuhn DN, Heath M, Wisser RJ, Meerow A, Brown JS, Lopes U, Schnell RJ (2003) Resistance gene homologues in Theobroma cacao as useful genetic markers. Theor Appl Genet 107:191–202. doi: 10.1007/s00122-003-1239-7 CrossRefPubMedGoogle Scholar
  40. Lanaud C, Kébé I, Risterucci AM, Clément D, N’Goran JKA, Grivet L, Tahi M, Cilas C, Pieretti I, Eskes A, Despréaux D (1999) Mapping quantitative trait loci (QTL) for resistance to Phytophthora palmivora in T. cacao L. 12th International Cocoa Research Conference, November 17–23. 99–105. Salvador, Bahía, Brazil: Cocoa Producers, AllianceGoogle Scholar
  41. Lanaud C, Boult E, Clapperton J, N’Goran JKA, Cros E, Chapelin M, Clément D, Petithugenin P (2003) Identification of QTLs related to fat content, seed size and sensorial traits in Theobroma cacao L. 14th International Cocoa Conference, 13–18 October, Accra, Ghana: Cocoa Producers, AllianceGoogle Scholar
  42. Lanaud C, Clément D, Flament MH, Risterucci AM, Kebe I, Nyasse S, Sounigo O, Motilal L, Thévenin JM, Paulin D, Ducamp M, N’Goran J, Fargeas D, Cilas C (2004a) Genetic mapping of quantitative trait loci for black pod resistance in cocoa. In: Cilas C, Despreaux D (eds) Improvement of cocoa tree resistance to Phytophthora diseases. Collection repères, Cirad, pp 147–164Google Scholar
  43. Lanaud C, Paulin D, Clément D, Ducamp M, Fouet O, Vezian-Bonnemayre K, Efron Y, Risterucci AM (2004b) Bulk segregant analyses of (17–3/1 × 36–3/1) progeny for resistance to Phytophthora- preliminary results. INGENIC meeting Univ, ReadingGoogle Scholar
  44. Lanaud C, Risterucci AM, Pieretti I, N’Goran JAK, Fargeas D (2004c) Characterisation and genetic mapping of resistance and defence gene analogs in cocoa (Theobroma cacao L.). Mol Breed 13:211–227. doi: 10.1023/B:MOLB.0000022515.23880.1b CrossRefGoogle Scholar
  45. Lefebvre V, Palloix A (1996) Both epistatic and additive effects of QTLs are involved in polygenic induced resistance to disease: a case study, the interaction pepper—Phytophthora capsici Leonian. Theor Appl Genet 93:503–511. doi: 10.1007/BF00417941 CrossRefGoogle Scholar
  46. Leonards-Schippers C, Gieffers W, Schiifer-Pregl R, Ritter E, Knapp SJ, Salamini F, Gebhardt C (1994) Quantitative resistance to Phytophthora infestans in potato. A case study for QTL Mapping in an allogamous plant species. Genetics 137:67–77PubMedGoogle Scholar
  47. Lohmueller KE, Pearce CL, Pike M, Lander ES, Hirschhorn JN (2003) Meta-analysis of genetic association studies supports a contribution of common variants to susceptibility to common disease. Nat Genet 33:177–182. doi: 10.1038/ng1071 CrossRefPubMedGoogle Scholar
  48. Marcano M, Morales S, Hoyer MT, Courtois B, Risterucci AM, Fouet O, Pugh T, Cros E, Gonzalez V, Dagert M, Lanaud C (2009) A genomewide admixture mapping study for yield factors and morphological traits in a cultivated cocoa (Theobroma cacao L.) population. TGG 5:329–337Google Scholar
  49. Marcano M, Pugh T, Cros E, Morales S, Portillo Páez E, Courtois B, Glaszmann J, Engels M, Phillips W, Astorga C, Risterucci AM, Fouet O, González V, Rosenberg K, Vallat I, Dagert M, Lanaud C (2007) Adding value to coca Theobroma cacao L germplasm information with domestication history and admixture mapping. Theor Appl Genet 114:877–884. doi: 10.1007/s00122-006-0486-9 CrossRefPubMedGoogle Scholar
  50. Morais RC (2005) The genomes of cacao. In: Forbes (March 14) 110–112Google Scholar
  51. Motilal LA, Sounigo O, Thévenin JM, Risterucci AM, Pierretti I, Noyer JL, Lanaud C (2000) Theobroma cacao L; genome map and QTLs for Phytophthora palmivora resistance. 13th International Cocoa Research Conference, 9–14 October 2000. 111–117. Kota Kinabalu, Malaysia: Cocoa Producers, AllianceGoogle Scholar
  52. N’Goran JAK, Risterucci AM, Clément D, Sounigo O, Lorieux M, Lanaud C (2000) Identification of quantitative trait loci (QTL) in Theobroma cacao L. Agron Afr 9:55–63Google Scholar
  53. Paim VRLM, Luz EDMN, Pires JL, Silva SDVM, de Souza JT, Albuquerque PSB, Filho LPS (2006) Sources of resistance to Crinipellis perniciosa in progenies of cacao accessions collected in the Brazilian Amazon. Sci Agric (Piracicaba Braz) 63(6):572–578Google Scholar
  54. Phillips-Mora W, Wilkinson MJ (2007) Frosty pod of cacao: a disease with a limited geographic range but unlimited potential of damage. Phytopathology 97:1644–1647. doi: 10.1094/PHYTO-97-12-1644 CrossRefPubMedGoogle Scholar
  55. Ploetz RC (2007) Cacao diseases: important threats to chocolate production worldwide. Phytopathology 97:1634–1639. doi: 10.1094/PHYTO-97-12-1634 CrossRefPubMedGoogle Scholar
  56. Pugh T (2005) Etude du déséquilibre de liaison chez le cacaoyer appartenant aux groupes Criollo/Trinitario. Application au marquage génétique d’intérêt pour la sélection. Thèse Doctorat Ecole National Supérieur de Agriculture, Montpellier, France, p 107Google Scholar
  57. Pugh T, Fouet O, Risterucci AM, Brottier P, Deletrez C (2004) A new codominant markers based cocoa linkage map: development and integration of 201 new microsatellites markers. Theor Appl Genet 108:1151–1161. doi: 10.1007/s00122-003-1533-4 CrossRefPubMedGoogle Scholar
  58. Queiroz VT, Guimaraes CT, Anhert D, Schuster I, Daher RT, Pereira MG, Miranda VRM, Loguercio LL, Barros EG, Moreira MA (2003) Identification of a major QTL in cocoa (Theobroma cacao L) associated with resistance to witches’ broom disease. Plant Breed 122:268–272. doi: 10.1046/j.1439-0523.2003.00809.x CrossRefGoogle Scholar
  59. Risterucci AM, Paulin D, Ducamp M, N’Goran JAK, Lanaud C (2003) Identification of QTLs related to cocoa resistance to three species of Phytophthora. Theor Appl Genet 108:168–174. doi: 10.1007/s00122-003-1408-8 CrossRefPubMedGoogle Scholar
  60. Rong J, Feltus FA, Waghmare VN, Pierce GJ, Chee PW, Draye X, Saranga Y, Wright RJ, Wilkins TA, May OL, Smith CW, Gannaway JR, Wendel JF, Paterson AH (2007) Meta-analysis of polyploid cotton QTL shows unequal contributions of subgenomes to a complex network of genes and gene clusters implicated in lint fiber development. Genetics 76(4):2577–2588. doi: 10.1534/genetics.107.074518 CrossRefGoogle Scholar
  61. Ruiz M, Rouard M, Turnbull CJ, Orain R, Ford C, Raboin LM, Lartaud M, Lanaud C, Clément D, Petithuguenin P, Wilkinson MD, Hadley P, Brown S, Rosenquist E, Courtois B (2003) A new international cocoa genetic database. 14th International Cocoa Conference, 13–18 October, Accra, Ghana: Cocoa Producers, AllianceGoogle Scholar
  62. Schnell RJ, Olano CT, Brown JS, Meerow AW, Cervantes-Martínez C (2005) Retrospective determination of the parental population of superior cacao (Theobroma cacao L) seedlings and association of microsatellite alleles with productivity. J Am Soc Hortic Sci 130(2):181–190Google Scholar
  63. Stam P (1993) Construction of integrated genetic linkage maps by means of a new computer package: joinmap. Plant J 3:739–744CrossRefGoogle Scholar
  64. Surujdeo-Maharaj S (2008) Studies on the mechanisms of resistance in Theobroma cacao L. to witches’ broom disease caused by Crinipellis perniciosa PhD Thesis, The University of The West Indies, St. Augustine, Trinidad and TobagoGoogle Scholar
  65. Thabuis A, Palloix A, Pflieger S, Daubeze AM, Caranta C, Lefebvre V (2003) Comparative mapping of Phytophthora resistance loci in pepper germplasm: evidence for conserved resistance loci across Solanaceae and for a large genetic diversity. Theor Appl Genet 106:1473–1485PubMedGoogle Scholar
  66. Van Ooijen JW (2004) MapQTL V5, Software for the mapping of quantitative trait loci in experimental populations. Kyazma BV, Wageningen, NetherlandsGoogle Scholar
  67. Van Ooijen JW (2006) JoinMAP V4, software for the calculation of genetic maps in experimental populations. Kyazma BV, Wageningen, NetherlandsGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • C. Lanaud
    • 1
  • O. Fouet
    • 1
  • D. Clément
    • 1
  • M. Boccara
    • 1
  • A. M. Risterucci
    • 1
  • S. Surujdeo-Maharaj
    • 1
  • T. Legavre
    • 1
  • X. Argout
    • 1
  1. 1.Centre de Coopération Internationale en Recherche Agronomique pour le Développment (CIRAD), CIRAD-BIOS TA A96/03UMR DAPMontpellier Cedex 5France

Personalised recommendations