Advertisement

Molecular Breeding

, 24:321 | Cite as

Retrospective identification of hybridogenic walnut plants by SSR fingerprinting and parentage analysis

  • Paola Pollegioni
  • Keith Woeste
  • Giuseppe Scarascia Mugnozza
  • Maria Emilia MalvoltiEmail author
Article

Abstract

Juglans × intermedia (Juglans nigra × Juglans regia) is considered the prototype walnut for quality wood production in Europe. Hybridization between the parental species is rare under natural conditions and difficult using controlled pollination because of phenological and genetic incompatibilities. The identification of hybridogenic parents is the first step toward obtaining hybrid progeny. We report the application of microsatellite markers for DNA fingerprinting and parentage analysis of half-sib families collected in a natural mixed population for which no phenological and morphological data were available. Ten nuclear, neutral, simple sequence repeat markers were used to analyse 600 samples. The high levels of polymorphism detected positively influenced the exclusion and identity probabilities. The assignment analysis revealed the presence of 198 diploid J. × intermedia hybrids among the seedling progeny. Maternity checks were performed on all individuals and few errors of sampling were found. Four distinct hybridogenic mother trees were identified, each showing different reproductive success rates. The 198 diploid hybrids belonged to four open-pollinated families based on an analysis of paternity using a likelihood approach. Differential male reproductive success was observed among pollen donors within the research site. Forty-nine of the 198 diploid hybrids detected in four progenies were sired by only three J. regia genotypes. Backward selection might be used to establish new seed orchards for inter-specific F1 hybrid production using genotypes with demonstrated compatibility.

Keywords

Juglans nigra Juglans regia Hybrids Microsatellites Fingerprinting Parentage analysis 

Notes

Acknowledgments

This research was supported by a PhD fellowship from Tuscia University of Viterbo and developed in the framework of the Italian Project “RI.SEL.ITALIA”(the Italian Ministry of Agricultural Policy, Sottoprogetto 1.1 “Biodiversità e Produzione di Materiale Forestale di Propagazione) coordinator Dr. Fulvio Ducci (CRA Ist. of Selviculture, Arezzo, Italy). The authors thanks Dr. Agnes Major, Marcello Cherubini and Daniela Taurchini for their support in statistical and laboratory analysis. The use of trade names is for the information and convenience of the reader and does not imply official endorsement or approval by the United States Department of Agriculture or the Forest Service of any product to the exclusion of others that may be suitable.

References

  1. Aitkin CGG (1995) Statistics and the evaluation of evidence for forensic scientists. Wiley, Chichester, UKGoogle Scholar
  2. Asuka Y, Tomaru N, Munehara Y, Tani N, Tsumura Y, Yamamoto S (2005) Half-sib family structure of Fagus crenata saplings in an old-growth beech-dwarf bamboo forest. Mol Ecol 14:2565–2575. doi: 10.1111/j.1365-294x.2005.02585.x CrossRefPubMedGoogle Scholar
  3. Bai WN, Zeng YF, Zhang DY (2007) Mating patterns and pollen dispersal in a heterodichogamous tree, Juglans mandshurica (Juglandaceae). New Phytol 176:699–707. doi: 10.1111/j.1469-8137.2007.02202.x CrossRefPubMedGoogle Scholar
  4. Becquey J (1990) Quelques précisions sur les noyers hybrides. Forêt enteprise 69:15–19Google Scholar
  5. Beineke WF, Masters CJ (1977) Controlling pollination in black walnut. In: Proceedings 10th Central States Forest Tree Improvement Conference. Purdue University, W Lafayette, pp 66–72Google Scholar
  6. Chaix G, Gerber S, Razafimaharo V, Vigneron P, Verhaegen D, Hamon S (2003) Gene flow estimation with microsatellites in a Malagasy seed orchard of Eucaliptus grandis. Theor Appl Genet 107:705–712. doi: 10.1007/s00122-003-1294-0 CrossRefPubMedGoogle Scholar
  7. Cournet JM, Piry S, Luikart G, Estoup A, Soligna M (1999) New methods employing multilocus genotypes to select or exclude populations as origins of individuals. Genetics 153:1989–2000Google Scholar
  8. Dow BD, Asley MV (1998) High levels of gene flow in bur oak revealed by paternity analysis using microsatellites. J Hered 89:62–70. doi: 10.1093/jhered/89.1.62 CrossRefGoogle Scholar
  9. Evett I, Weir B (1998) Interpreting DNA evidence. Sinauer Associates, Sunderland, MAGoogle Scholar
  10. Fady B, Ducci F, Aleta N, Becquey J, Diaz Vazquez R, Fernandez Lopez F, Jay-Allemand C (2003) Walnut demonstrates strong genetic variability for adaptive and wood quality traits in a network of juvenile field tests across Europe. New For 25:211–225. doi: 10.1023/A:1022939609548 Google Scholar
  11. Funk D (1970) Genetics of black walnut. USDA For Serv Res Paper (WO), vol ii, Washington, pp 1–13Google Scholar
  12. Grattapaglia D, Ribeiro VJ, Rezende GDSP (2004) Retrospective selection of elite parent trees using paternity testing with microsatellite markers: an alternative short term breeding tactic for Eucaliptus. Theor Appl Genet 109:192–199. doi: 10.1007/s00122-004-1617-9 CrossRefPubMedGoogle Scholar
  13. Griggs WH (1953) Pollination requirements of fruits and nuts. Calif Agr Exp Sta Exp Serv Circ 424:35. http://scholar.google.it/Griggs+WH+Pollination+requirements+of+fruits+and+nuts
  14. He T, Smouse PE (2002) Paternity analysis in Ophiopogon xylorrhizus Wang et Tai (Liliaceae sl); selfing assures reproductive success. J Evol Biol 15:487–494. doi: 10.1046/j.1420-9101.2002.00393.x CrossRefGoogle Scholar
  15. Hedrick PW (2000) Genetics of populations, 2nd edn. Jones and Bartlett, BostonGoogle Scholar
  16. Impiumi G, Ramina A (1967) Ricerche sulla biologia fiorale e di fruttificazione del noce (J regia) I Osservazioni sulla morfologia fiorale e sul trasporto del polline. Rivista dell’Ortofrutticoltura italiana 51:538–543Google Scholar
  17. Isagi Y, Kanazashi T, Suzuki W, Tanaka H, Abe T (2004) Highly variable pollination patterns in Magnolia obovata revealed by microsatellite paternity analysis. Int J Plant Sci 165:1047–1053. doi: 10.1086/423883 CrossRefGoogle Scholar
  18. Jay-Allemand C, Dufour J, Germain E (1990) Detection précoce et rapide des noyers hybrids interspécifiques (Juglans nigra × Juglans regia) au moyen de critères morphologiques. PHM-Revue Horticole 311:39–41Google Scholar
  19. Luza JG, Polito VS (1985) In vitro germination and storage of English walnut pollen. Sci Horti 27:303–316. doi: 10.1016/0304-4238(85)90035-4 CrossRefGoogle Scholar
  20. Luza JG, Polito VS (1988a) Microsporogenesis and anther differentiation in Juglans regia L, a developmental basis for heterodichogamy in walnut. Bot Gaz 149:30–36. doi: 10.1086/337688 CrossRefGoogle Scholar
  21. Luza JG, Polito VS (1988b) Cryopreservation of English walnut (Juglans regia L) pollen. Euphytica 37:141–148. doi: 10.1007/BF00036851 CrossRefGoogle Scholar
  22. Luza JG, Polito VS, Weinbaum SA (1987) Staminate bloom date and temperature responses of pollen germination and tube growth in two walnut (Juglans) species. Am J Bot 74:1898–1903. doi: 10.2307/2443973 CrossRefGoogle Scholar
  23. Marshall TC, Slate J, Kruuk LEB, Pemberton JM (1998) Statical confidence for likelihhod-based paternity inference in natural populations. Mol Ecol 7:639–655. doi: 10.1046/j.1365-294x.1998.00374.x CrossRefPubMedGoogle Scholar
  24. McGranahan G, Voyiatzis D, Catlin P, Polito V (1994) High pollen loads can cause pistillate flower abscission in walnut. J Am Soc Hortic Sci 119:505–509Google Scholar
  25. McKay JW (1965) Progress in black × Persian walnut breeding. Annu Rep North Nut Growers Assoc 56:76–80Google Scholar
  26. McKay JW, McKay HH (1941) Microsporogenesis in Juglans intermedia Carr. Am J Bot 28:4sGoogle Scholar
  27. Meagher TR (1986) Analysis of paternity within a natural population of Chamaelirium luteum. I. Identification of the most likely parents. Am Nat 128:199–215, Theor Popul Biol 29:87–106Google Scholar
  28. Paetkau D, Calvert W, Stirling W, Strobeck C (1995) Microsatellite analysis of populatin structure in Canadian polar bears. Mol Ecol 4:347–354. doi: 10.1111/j.1365-294X.1995.tb00227.x CrossRefPubMedGoogle Scholar
  29. Paetkau D, Waits LP, Clarkson PL, Craighead L, Vyse E, Ward R, Strobeck C (1998) Variation in genetic diversity across the range of North America brown bears. Conserv Biol 12:418–429. doi: 10.1046/j.1523-1739.1998.96457.x CrossRefGoogle Scholar
  30. Paetkau D, Slade R, Burden M, Estoup A (2004) Genetic assignment methods for the direct, real-time estimation of migration rate: a simulation-based exploration of accuracy and power. Mol Ecol 13:55–65. doi: 10.1046/j.1365-294X.2004.02008.x CrossRefPubMedGoogle Scholar
  31. Peakall R, Smouse PE (2005) GenAlEx V6: Genetic analysis in Excel population genetic software for teaching and research. The Australian National University, Canberra. http://wwwanueduau/BoZo/genAlEx/
  32. Pollegioni P, Woeste K, Major A, Scarascia Mugnozza G, Malvolti ME (2009) Characterization of Juglans nigra (L), Juglans regia (L) and Juglans x intermedia (Carr) by SSR markers: a case study in Italy. Silvae Genet 58:68–78Google Scholar
  33. Rannala B, Mountain JL (1997) Detecting immigration by using multilocus genotypes. Proc Natl Acad Sci USA 94:9197–9201. doi: 10.1073/pnas.94.17.9197 CrossRefPubMedGoogle Scholar
  34. Robichaud RL, Glaubitz JC, Rhodes OE Jr, Woeste K (2006) A robust set of black walnut microsatellites for parentage and clonal identification. New For 32:179–196. doi: 10.1007/s11056-005-5961-7 Google Scholar
  35. Rohlf FJ (2001) NTSYS-pc numerical taxonomy and multivariate analysis system version 2.1. Exeter Software, East SetauketGoogle Scholar
  36. Sartorius R (1990) Anatomische histologische und cytologische Untersuchungen zur Samenentwicklung bei der walnut (Juglans regia L) unter besonderer Berücksichtigung der apomoxis. Dissertation, Fakulät III, Agrarwissenschaften I der Universität Hohenheim, p 123Google Scholar
  37. Scheeder T (1990) Juglans intermedia in einem Bestand am Kaiserstuhl AFZ Der Wald 45:1236–1237Google Scholar
  38. Schreiner EJ (1960) Objectives of pest-resistance improvement in forest trees and their possible attainment. Proc 5th World Forestry Cong, Seattle, USA 2:721–727Google Scholar
  39. Sokal RR, Sneath PHA (1963) Principles of numerical taxonomy. Freeman, San FranciscoGoogle Scholar
  40. Streiff R, Ducousso A, Lexer C, Steinkellner H, Gloessl J, Kremer A (1999) Pollen dispersal inferred from paternity analysis in a mixed oak stand of Quercus robur L and Q petraea (Matt) Liebl. Mol Ecol 8:831–841. doi: 10.1046/j.1365-294X.1999.00637.x CrossRefGoogle Scholar
  41. Tabbener HE, Cottrell JE (2003) The use of PCR based DNA markers to study the paternity of poplar seedlings. For Ecol Manage 179:363–376. doi: 10.1016/S0378-1127(02)00538-8 CrossRefGoogle Scholar
  42. Wheeler N, Payne P, Hipkins V, Saich R, Kenny S, Tuskan G (2006) Polymix breeding with paternity analysis in Populus: a test for differentiation reproductive success (DRS) among pollen donors. Tree Genet Genomes 2:56–60. doi: 10.1007/s11295-005-0033-x CrossRefGoogle Scholar
  43. Zobel B, Talbert J (2003) Applied forest tree improvement. Blackburn Press, Caldwell, 505 pGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Paola Pollegioni
    • 1
  • Keith Woeste
    • 2
  • Giuseppe Scarascia Mugnozza
    • 3
  • Maria Emilia Malvolti
    • 1
    Email author
  1. 1.CNR Institute of Agro-environmental and Forest BiologyPoranoItaly
  2. 2.USDA Forest Service, Hardwood Tree Improvement and Regeneration Center, Department of Forestry and Natural ResourcesPurdue UniversityWest LafayetteUSA
  3. 3.CRA Department of Agronomy, Forestry and Land UseRomeItaly

Personalised recommendations