Advertisement

Molecular Breeding

, Volume 24, Issue 3, pp 293–303 | Cite as

A genetic linkage map of the cultivated strawberry (Fragaria × ananassa) and its comparison to the diploid Fragaria reference map

  • D. J. Sargent
  • F. Fernandéz-Fernandéz
  • J. J. Ruiz-Roja
  • B. G. Sutherland
  • A. Passey
  • A. B. Whitehouse
  • D. W. Simpson
Article

Abstract

The cultivated strawberry, Fragaria × ananassa, is the most economically-important soft-fruit species, but few practical molecular tools for the purpose of marker assisted selection currently exist. As a precursor to the development of such tools, a genetic linkage map was developed from a F1 population comprising 174 seedlings derived from a cross between two F. × ananassa cultivars, ‘Redgauntlet’ × ‘Hapil’. The resultant map is composed of 315 molecular markers—218 microsatellites, 11 gene-specific markers and 86 AFLP and RAPD markers—and spans 3,116 cM. In total, 69 linkage group fragments were recovered, more than the 56 linkage groups expected for the cultivated strawberry, however, all fragments contained a transferable marker that could be associated with one of 56 linkage group scaffolds. The female (Redgauntlet) and male (Hapil) linkage maps are composed, respectively of 170 loci in 32 linkage groups covering 1,675.3 cM and 182 loci in 37 linkage groups covering 1,440.7 cM, with 37 markers common to both maps. The maximum number of markers in one linkage group was 15, the minimum was two. All linkage groups resolved contained at least one transferable marker (SSR or gene-specific) that had been mapped on the diploid Fragaria reference map (FV × FB), and therefore all linkage groups could be identified as homologous to one of the seven diploid Fragaria linkage groups. When marker order was compared to the diploid Fragaria reference map, effectively complete colinearity was observed. However, the occurrence of duplicated loci on homologues of linkage groups FG1 and FG6 provided evidence of a putative chromosomal duplication or translocation event in Fragaria. The development of this linkage map will facilitate the study and dissection of QTL associated with traits of economic importance such as disease resistance and fruit quality, and provides a foundation for the development of markers for the purpose of marker assisted breeding and selection in the cultivated strawberry, F. × ananassa.

Keywords

Linkage mapping Synteny Comparative genomics Polyploidy Rosaceae 

Notes

Acknowledgments

Molecular genetics in Fragaria at East Malling Research is funded by the BBSRC.

Supplementary material

11032_2009_9292_MOESM1_ESM.pdf (1.4 mb)
Supplemental Fig. 1. A comparison of linkage groups associated with the 56 homeologous linkage groups of the RG × H linkage map and homologous linkage groups on the diploid Fragaria reference map FV × FB. Microsatellite markers mapped in the full FV × FB progeny are given in bold, those mapped using the FV × FB bin set are given in red, and markers in blue are SSRs that did not segregate in the FV × FB progeny. AFLP and RAPD markers are shown in grey. Mapping distances are given in centi-Morgans (cM) (PDF 1401 kb)
11032_2009_9292_MOESM2_ESM.doc (427 kb)
Supplementary material 2 (DOC 427 kb)

References

  1. Ahmadi H, Bringhurst RS, Voth V (1990) Modes of inheritance of photoperiodism in Fragaria. J Am Soc Hortic Sci 115:146–152Google Scholar
  2. Arulsekar S, Bringhurst RS, Voth V (1981) Inheritance of PGI and LAP isozymes in octoploid cultivated strawberries. J Am Soc Hortic Sci 106:679–683Google Scholar
  3. Ashley MV, Wilk JA, Styan SMN, Craft KJ, Jones KL, Feldheim KA, Lewers KS, Ashman TL (2003) High variability and disomic segregation of microsatellites in the octoploid Fragaria virginiana Mill. (Rosaceae). Theor Appl Genet 107:1201–1207. doi: 10.1007/s00122-003-1370-5 PubMedCrossRefGoogle Scholar
  4. Darrow GM (1966) The strawberry: History, breeding and physiology. Holt, Rinehart and Winston, USAGoogle Scholar
  5. Haymes KM, Henken B, Davis TM, van de Weg WE (1997) Identification of RAPD markers linked to a Phytophthora fragariae resistance gene (Rpf1) in the cultivated strawberry. Theor Appl Genet 94:1097–1101CrossRefGoogle Scholar
  6. Iwatsubo Y, Naruhashi N (1989) Karyotypes of three species of Fragaria (Rosaceae). Cytologia (Tokyo) 54:493–497Google Scholar
  7. Lerceteau-Kohler E, Guerin G, Laigret F, Denoyes-Rothan B (2003) Characterization of mixed disomic and polysomic inheritance in the octoploid strawberry (Fragaria x ananassa) using AFLP mapping. Theor Appl Genet 107:619–628. doi: 10.1007/s00122-003-1300-6 PubMedCrossRefGoogle Scholar
  8. Lerceteau-Köhler E, Guerin G, Denoyes-Rothan B (2005) Identification of SCAR markers linked to Rca2 anthracnose resistance gene and their assessment in strawberry germplasm. Theor Appl Genet 111:862–870. doi: 10.1007/s00122-005-0008-1 PubMedCrossRefGoogle Scholar
  9. Nier S, Simpson DW, Tobutt KR, Sargent DJ (2006) Construction of a genetic linkage map of an interspecific diploid Fragaria BC1 mapping population (F. vesca 815 × [F. vesca 815 × F. viridis 903]) and its comparison to the Fragaria reference map (FV × FB). J Hortic Sci Biotechnol 81:645–650Google Scholar
  10. Rousseau-Gueutin M, Lerceteau-Köhler E, Barrot L, Sargent DJ, Monfort A, Simpson DW, Arús P, Guérin G, Denoyes-Rothan B (2008) Comparative genetic mapping between octoploid and diploid Fragaria species reveals a high level of colinearity between their genomes and the essentially disomic behavior of the cultivated octoploid strawberry. Genetics 179:2045–2060. doi: 10.1534/genetics.107.083840 PubMedCrossRefGoogle Scholar
  11. Rousseau-Gueutin M, Gaston A, Aïnouche A, Aïnouche ML, Olbricht K, Staudt G, Richard L, Denoyes-Rothan B (2009) Tracking the evolutionary history of polyploidy in Fragaria L. (strawberry): new insights from phylogenetic analyses of low-copy nuclear genes. Mol Phylogenet Evol 51:515–530. doi: 10.1016/j.ympev.2008.12.024 PubMedCrossRefGoogle Scholar
  12. Sargent DJ, Hadonou AM, Simpson DW (2003) Development and characterization of polymorphic microsatellite markers from Fragaria viridis, a wild diploid strawberry. Mol Ecol Notes 3:550–552. doi: 10.1046/j.1471-8286.2003.00507.x CrossRefGoogle Scholar
  13. Sargent DJ, Geibel M, Hawkins JA, Wilkinson MJ, Battey NH, Simpson DW (2004) Morphological traits in diploid Fragaria for the study of the genetic basis of phenotypic differences between species. Ann Bot (Lond) 94:787–796. doi: 10.1093/aob/mch217 CrossRefGoogle Scholar
  14. Sargent DJ, Clarke J, Simpson DW, Tobutt KR, Arús P, Monfort A, Vilanova S, Denoyes-Rothan B, Rousseau M, Folta KM, Bassil NV, Battey NH (2006) An enhanced microsatellite map of diploid Fragaria. Theor Appl Genet 112:1349–1359. doi: 10.1007/s00122-006-0237-y PubMedCrossRefGoogle Scholar
  15. Sargent DJ, Rys A, Nier S, Simpson DW, Tobutt KR (2007) The development and mapping of functional markers in Fragaria and their transferability and potential for mapping in other genera. Theor Appl Genet 114:373–384. doi: 10.1007/s00122-006-0441-9 PubMedCrossRefGoogle Scholar
  16. Sargent DJ, Cipriani G, Vilanova S, Gil-Ariza D, Arús P, Simpson DW, Tobutt KR, Monfort A (2008) The development of a bin mapping population and the selective mapping of 103 markers in the diploid Fragaria reference map. Genome 51:120–127. doi: 10.1139/G07-107 PubMedCrossRefGoogle Scholar
  17. Seoighe C, Gehring C (2004) Genome duplication led to highly selective expansion of the Arabidopsis thaliana proteome. Trends Genet 10:461–464. doi: 10.1016/j.tig.2004.07.008 CrossRefGoogle Scholar
  18. Seoighe C, Wolfe KH (1998) Extent of genomic rearrangement after genome duplication in yeast. Proc Natl Acad Sci USA 95:4447–4452. doi: 10.1073/pnas.95.8.4447 PubMedCrossRefGoogle Scholar
  19. Spigler RB, Lewers KS, Main DS, Ashman TL (2008) Genetic mapping of sex determination in a wild strawberry, Fragaria virginiana, reveals earliest form of sex chromosome. Heredity 101:507–517. doi: 10.1038/hdy.2008.100 PubMedCrossRefGoogle Scholar
  20. Staudt G (2006) Himalayan species of Fragaria (Rosaceae). Bot Jahrb Syst Pflanzengesch Pflanzengeogr 126:483–508. doi: 10.1127/0006-8152/2006/0126-0483 CrossRefGoogle Scholar
  21. Sugimoto T, Tamaki K, Matsumoto J, Yamamoto Y, Shiwaku K, Watanabe K (2005) Detection of RAPD markers linked to the everbearing gene in Japanese cultivated strawberry. Plant Breed 124:498–501. doi: 10.1111/j.1439-0523.2005.01144.x CrossRefGoogle Scholar
  22. Sutherland BG, Tobutt KR, Marchese A, Paternoster G, Simpson DW, Sargent DJ (2008) A genetic linkage map of Physocarpus, a member of the Spiraeoideae (Rosaceae), based on RAPD, AFLP, RGA, SSR and gene specific markers. Plant Breed 127:527–532. doi: 10.1111/j.1439-0523.2008.01505.x CrossRefGoogle Scholar
  23. Vandepoele K, Simillion C, Van de Peer Y (2002) Detecting the undetectable: uncovering duplicated segments in Arabidopsis by comparison with rice. Trends Genet 18:606–608. doi: 10.1016/S0168-9525(02)02796-8 PubMedCrossRefGoogle Scholar
  24. Vilanova S, Sargent DJ, Arús P, Monfort A (2008) Synteny conservation between two distantly-related Rosaceae genomes: Prunus (the stone fruits) and Fragaria (the strawberry). BMC Plant Biol 8:67. doi: 10.1186/1471-2229-8-67 PubMedCrossRefGoogle Scholar
  25. Voorrips RE (2002) MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered 93:77–78. doi: 10.1093/jhered/93.1.77 PubMedCrossRefGoogle Scholar
  26. Wang XY, Shi XL, Hao BL, Ge S, Luo JC (2005) Duplication and DNA segmental loss in the rice genome: implications for diploidization. New Phytol 165:937–946. doi: 10.1111/j.1469-8137.2004.01293.x PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • D. J. Sargent
    • 1
  • F. Fernandéz-Fernandéz
    • 1
  • J. J. Ruiz-Roja
    • 2
  • B. G. Sutherland
    • 1
  • A. Passey
    • 1
  • A. B. Whitehouse
    • 1
  • D. W. Simpson
    • 1
  1. 1.East Malling Research (EMR)East Malling, KentUK
  2. 2.Department of HorticultureVirginia Polytechnic Institute and State UniversityBlacksburgUSA

Personalised recommendations