Molecular Breeding

, Volume 23, Issue 2, pp 269–277

The salt-tolerance gene rstB can be used as a selectable marker in plant genetic transformation

  • Wan-Jun Zhang
  • Su-Sheng Yang
  • Xiao-Ye Shen
  • Yong-Sheng Jin
  • Hui-Jun Zhao
  • Tao Wang
Article

Abstract

The salt-tolerance gene rstB under the control of the cauliflower mosaic virus 35S promoter was used as a selectable marker gene in the Agrobacterium tumefaciens-mediated transformation of tobacco (Nicotiana tabacum cv. Xanthi). The selective agent for plant regeneration was tolerance to 170 mM sodium chloride. The highest selection efficiency was 83.3%. No obvious differences in selection efficiencies were observed when those obtained using the standard selectable marker gene hpt and a selection regime of 10 mg l−1 hygromycin. Transgenic events were confirmed by PCR, Southern blot, RT-PCR and green fluorescent protein studies. The rstB transgenic plants showed improved salt tolerance and a normal phenotype. Based on these results, we suggest that the rstB gene may be used as a promising selectable marker and an alternative to the antibiotic- or herbicide-resistance genes in plant transformation.

Keywords

NaCl Plant transformation Salt tolerance Selectable marker Selection reagent 

Supplementary material

11032_2008_9231_MOESM1_ESM.docx (2.4 mb)
Supplementary figures (DOCX 2497 kb)

References

  1. Chen Z, Hong X, Zhang H, Wang Y, Li X, Zhu JK, Gong Z (2005) Disruption of the cellulose synthase gene, AtCesA8/IRX1, enhances drought and osmotic stress tolerance in Arabidopsis. Plant J 43:273–283. doi:10.1111/j.1365-313X.2005.02452.x PubMedCrossRefGoogle Scholar
  2. Curtis MD, Grossniklaus U (2003) A gateway cloning vector set for high-throughput functional analysis of genes in planta. Plant Physiol 133:462–469. doi:10.1104/pp.103.027979 PubMedCrossRefGoogle Scholar
  3. Daley M, Knauf VC, Summerfelt KP, Turner JC (1998) Cotransformation with one Agrobacterium tumefaciens strain containing two binary plasmids as a method for producing marker free transgenic plants. Plant Cell Rep 17:480–496. doi:10.1007/s002990050430 CrossRefGoogle Scholar
  4. Daniell H, Muthukumar B, Lee SB (2001) Marker free transgenic plants: engineering the chloroplast genome without use of antibiotic selection. Curr Genet 39:109–116. doi:10.1007/s002940100185 PubMedCrossRefGoogle Scholar
  5. De Vetten N, Wolters AM, Raemakers K, van der Meer I, Stege RT, Heeres E, Heeres P, Visser R (2003) A transformation method for obtaining marker-free plants of a cross-pollinating and vegetatively propagated crop. Nat Biotechnol 21:439–442. doi:10.1038/nbt801 PubMedCrossRefGoogle Scholar
  6. Dubouzet JG, Sakuma Y, Ito Y, Kasuga M, Dubouzet EG, Miura S, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2003) OsDREB genes in rice, Oryza sativa L., encode transcription activators that function in drought-, high-salt- and cold-responsive gene expression. Plant J 33:751–763. doi:10.1046/j.1365-313X.2003.01661.x PubMedCrossRefGoogle Scholar
  7. Ebinuma H, Sugita K, Matsunaga E et al (2000) Selection of marker-free transgenic plants using the oncogenes (IPT, ROLA, B, C) of Agrobacterium as selectable markers. In: Jarn SM, Minocha SC (eds) Molecular biology of woody plants. Kluwer, Dordrecht, pp 24–26Google Scholar
  8. Erikson O, Hertzberg M, Nǎsholm T (2004) A conditional marker gene allowing both positive and negative selection in plants. Nat Biotechnol 22:455–458. doi:10.1038/nbt946 PubMedCrossRefGoogle Scholar
  9. FAO (Food and Agriculture Organization) (2005) Global network on integrated soil management for sustainable use of salt-effect soils. FAO Land and Plant Nutrition Management Service, Rome. Available at: http://www.fao. org/ag/ag/agll/spush
  10. Flowers TJ (2004) Improving crop salt tolerance. J Exp Bot 396:307–319. doi:10.1093/jxb/erh003 CrossRefGoogle Scholar
  11. Gao YF, Zhu Z, Xiao GF, Zhu Y, Wu Q, Li XH (1989) Isolation of soybean kunitz trysin inhibitor gene and its application in plant insect-resistant genetic engineering. Acta Bot Sin 40:405–411Google Scholar
  12. Ge SC, Liu YN, Yang SS (2001) Cloning of gene related to salt tolerance from Sinorhizobium fredii RT19 and its expression in Escherichia coli. Acta Genetica Sin 28:575–582Google Scholar
  13. Hajdukiewicz PT, Gilbertson L, Stub JM (2001) Multiple pathways for Cre/lox-mediated recombination in plastids. Plant J 2:161–170. doi:10.1046/j.1365-313x.2001.01067.x CrossRefGoogle Scholar
  14. He Z, Fu Y, Si H, Hu G, Zhang S, Yu Y, Sun Z (2004) Phosphomannose-isomerase (pmi) gene as a selectable marker for rice transformation via Agrobacterium. Plant Sci 166:17–22. doi:10.1016/S0168-9452(03)00338-8 CrossRefGoogle Scholar
  15. Hohn B, Levy A, Puchta H (2001) Elimination of selection markers from transgenic plants. Curr Opin Biotechnol 12(2):139–143. doi:10.1016/S0958-1669(00)00188-9 PubMedCrossRefGoogle Scholar
  16. Horsch RB, Fry JE, Hoffmana NL, Eichholtz D, Rogers SG, Fraley RT (1985) A simple and general method for transferring genes into palnts. Science 227:1229–1231. doi:10.1126/science.227.4691.1229 CrossRefGoogle Scholar
  17. Joserbo M, Donaldson I, Kreiberg J, Petersen SG, Brunstedt J (1998) Analysis of mannose selection used for transformation of sugar beet. Mol Breed 4:111–117. doi:10.1023/A:1009633809610 CrossRefGoogle Scholar
  18. Klaus SMJ, Huang FC, Golds TJ, Koop HU (2004) Generation of marker-free plasmid transformants using a transiently cointegrated selection gene. Nat Biotechnol 22(2):225–229. doi:10.1038/nbt933 PubMedCrossRefGoogle Scholar
  19. Koning A (2003) A framework for designing transgenic crops—science, safety and citizen’s concerns. Nat Biotechnol 21:1274–1279. doi:10.1038/nbt1103-1274 CrossRefGoogle Scholar
  20. Kunkel T, Niu QW, Chan YS, Chua NH (1999) Inducible isopentenyl transferase as high efficiency marker for plant transformation. Nat Biotechnol 17:916–919. doi:10.1038/12914 PubMedCrossRefGoogle Scholar
  21. Leyman B, Avonce N, Ramon M, Van Dijck P, Iturriaga G, Thevelein JM (2006) Trehalose-6-phosphate synthase as an intrinsic selection marker for plant transformation. J Biotechnol 121:309–317. doi:10.1016/j.jbiotec.2005.08.033 PubMedCrossRefGoogle Scholar
  22. Liu HK, Yang C, Wei ZM (2005) Heat shock-regulated site-specific excision of extraneous DNA in transgenic plants. Plant Sci 168:997–1003. doi:10.1016/j.plantsci.2004.11.021 CrossRefGoogle Scholar
  23. Luo K, Zheng X, Chen Y, Xiao Y, Zhao D, Mc Avoy R, Pei Y, Li Y (2006) The maize Knotted1 gene is an effective positive selectable marker gene for Agrobacterium-mediated tobacco transformation. Plant Cell Rep 25:403–409. doi:10.1007/s00299-005-0051-z PubMedCrossRefGoogle Scholar
  24. Mentewab A, Stewart JCN (2005) Overexpression of an Arabidopsis thaliana ABC transporter confers kanamycin resistance to transgenic plants. Nat Biotechnol 23:1177–1180. doi:10.1038/nbt1134 PubMedCrossRefGoogle Scholar
  25. Miki B, McHugh S (2004) Selectable marker genes in transgenic plants: applications, alternatives and biosafety. J Biotechnol 107:193–232. doi:10.1016/j.jbiotec.2003.10.011 PubMedCrossRefGoogle Scholar
  26. Munns R (2005) Genes and salt tolerance: bringing them together. New Phytol 167:645–663. doi:10.1111/j.1469-8137.2005.01487.x PubMedCrossRefGoogle Scholar
  27. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol Plant 15:473–497. doi:10.1111/j.1399-3054.1962.tb08052.x CrossRefGoogle Scholar
  28. Puchta H (2000) Removing selectable marker genes: taking the shortcut. Trends Plant Sci 5:273–274. doi:10.1016/S1360-1385(00)01684-8 PubMedCrossRefGoogle Scholar
  29. Rommens CM (2004) All-native DNA transformation: a new approach to plant genetic engineering. Trends Plant Sci 9:1360–1385. doi:10.1016/j.tplants.2004.07.001 CrossRefGoogle Scholar
  30. Rommens CM (2006) Kanamycin resistance in plants: an unexpected trait controlled by a potentially multifaceted gene. Trends Plant Sci 11(7):317–319. doi:10.1016/j.tplants.2006.05.002 PubMedCrossRefGoogle Scholar
  31. Rommens CM, Ye J, Richael C, Swords K (2006) Improving potato storage and processing characteristics through all-native DNA transformation. J Agric Food Chem 54:9882–9887. doi:10.1021/jf062477l PubMedCrossRefGoogle Scholar
  32. Sambrook J, Russell DW (2001) Molecular cloning, 3rd edn. A laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring HarborGoogle Scholar
  33. Shi H, Ishitani M, Kim C, Zhu JK (2000) The Arabidopsis thaliana salt tolerance gene SOS1 encodes a putative Na+/H+ antiporter. Proc Natl Acad Sci USA 97:6896–6901. doi:10.1073/pnas.120170197 PubMedCrossRefGoogle Scholar
  34. Wang Y, Chen B, Hu Y, Li J, Lin Z (2005) Inducible excision of selectable marker gene from transgenic plants by the Cre/Lox site-specific recombination system. Transgenic Res 14:605–614. doi:10.1007/s11248-005-0884-9 PubMedCrossRefGoogle Scholar
  35. Zhao J, Barkla BJ, Marshall J, Pittman JK, Hirschi KD (2008) The Arabidopsis cax3 mutants display altered salt tolerance, pH sensitivity and reduced plasma membrane H+-ATPase activity. Planta 227(3):659–669. doi:10.1007/s00425-007-0648-2 PubMedCrossRefGoogle Scholar
  36. Zhu JK (2003) Regulation of ion homeostasis under salt stress. Curr Opin Plant Biol 6:441–445. doi:10.1016/S1369-5266(03)00085-2 PubMedCrossRefGoogle Scholar
  37. Zhu Z, Wu R (2008) Regeneration of transgenic rice plants using high salt for selection without the need for antibiotics or herbicides. Plant Sci 174:519–523. doi:10.1016/j.plantsci.2008.01.017 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Wan-Jun Zhang
    • 1
    • 2
  • Su-Sheng Yang
    • 3
  • Xiao-Ye Shen
    • 1
  • Yong-Sheng Jin
    • 1
  • Hui-Jun Zhao
    • 1
  • Tao Wang
    • 1
  1. 1.State Key Laboratory for Agro-biotechnologyChina Agricultural UniversityHaidian, BeijingPeople’s Republic of China
  2. 2.Plant Molecular Biotechnology Laboratory, Agriculture and food SystemUniversity of MelbourneMelbourneAustralia
  3. 3.Department of Microbiology and ImmunologyChina Agricultural UniversityHaidian, BeijingPeople’s Republic of China

Personalised recommendations