Molecular Breeding

, Volume 23, Issue 1, pp 139–152 | Cite as

Association of haplotype diversity in the α-amylase gene amy1 with malting quality parameters in barley

Article

Abstract

Amylases play an essential role in the germination and malting process. Therefore, these genes are interesting candidates for marker development in order to improve malting quality as an important breeding aim. The intervarietal diversity of the α-amylase gene amy1 mapping to chromosome 6H was investigated. A total of six single nucleotide polymorphisms (SNPs) were detected which defined four haplotypes. Associations between SNP-markers and important malting parameters were discovered in a collection of 117 European spring and winter barley cultivars, representing the current commercial germplasm. Haplotype amy1_H2 was significantly associated with a number of malting related traits and explained 19% of the phenotypic variation of the malting quality index (MQI) for all varieties and 35% in a subset of 72 winter barleys. The diagnostic SNP3 was associated with a 45% difference in the MQI. Within the spring barleys, the average value of haplotype amy1_H1 for friability was significantly higher than that of amy1_H4. All discovered SNPs were converted into high-throughput markers for pyrosequencing and can be used for marker assisted selection.

Keywords

Hordeum vulgare L. α-Amylase 1 (amy1Single nucleotide polymorphism (SNP) Malting quality Association genetics Population structure 

Supplementary material

References

  1. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic alignment search tool. J Mol Biol 215:403–410PubMedGoogle Scholar
  2. Altschul SF, Madden TL, Schäfer AA, Zhang JZ, Zhang Z, Miller W et al (1997) Gapped BLAST and PSI-BLAST; a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402. doi:10.1093/nar/25.17.3389 PubMedCrossRefGoogle Scholar
  3. Beló A, Zheng P, Luck S, Shen B, Meyer DJ, Li B et al (2008) Whole genome scan detects an allelic variant of fad2 associated with increased oleic acid levels in maize. Mol Genet Genomics 279:1–10. doi:10.1007/s00438-007-0289-y PubMedCrossRefGoogle Scholar
  4. Bozonnet S, Jensen MT, Nielsen MM, Aghajari N, Jensen MH, Kramhøft B, Willemoës M, Tranier S, Haser R, Svensson B (2007) The ‘pair of sugar tongs’ site on the non-catalytic domain C of barley α-amylase participates in substrate binding and activity. FEBS 274:5055–5067CrossRefGoogle Scholar
  5. Buckler ES, Bradbury P, Kroon D (2007) TASSEL: trait association, evolution, and linkage analysis software package. Buckler Lab for maize genetics and diversity. Vers. 2.0.1. http://www.maizegenetics.net
  6. Caldwell KS, Russell J, Langridge P, Powell W (2006) Extreme population-dependent linkage disequilibrium detected in an inbreeding plant species, Hordeum vulgare. Genetics 172:557–567. doi:10.1534/genetics.104.038489 PubMedCrossRefGoogle Scholar
  7. Corpet F (1988) Multiple sequence alignment with hierarchical clustering. Nucleic Acids Res 16(22):10881–10890. doi:10.1093/nar/16.22.10881 PubMedCrossRefGoogle Scholar
  8. Costa JM, Corey A, Hayes PM, Jobet C, Kleinhofs A, Kopisch-Obusch A et al (2001) Molecular mapping of the Oregon Wolfe Barleys: a phenotypically polymorphic doubled haploid population. Theor Appl Genet 103:415–424. doi:10.1007/s001220100622 CrossRefGoogle Scholar
  9. Davies GJ, Henrissat B (1995) Structure and mechanism of glycosyl hydrolases. Structure 3:853–859. doi:10.1016/S0969-2126(01)00220-9 PubMedCrossRefGoogle Scholar
  10. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software structure: a simulation study. Mol Ecol 14:2611–2620. doi:10.1111/j.1365-294X.2005.02553.x PubMedCrossRefGoogle Scholar
  11. Falush D, Stephens M, Pritchard JK (2003) Inference of population structure: extensions to linked loci and correlated allele frequencies. Genetics 164:1567–1587PubMedGoogle Scholar
  12. Fox GP, Panozzo JF, Li CD, Lance RCM, Inkerman PA, Henry RJ (2003) Molecular basis of barley quality. Aust J Agric Res 54:1081–1101. doi:10.1071/AR02237 CrossRefGoogle Scholar
  13. Georg-Kraemer JE, Mundstock EC, Cavalli-Molina S (2001) Developmental expression of amylase during barley malting. J Cereal Sci 33:279–288. doi:10.1006/jcrs.2001.0367 CrossRefGoogle Scholar
  14. Han F, Romagosa I, Ullrich SE, Jones BL, Hayes PM, Wesenberg DM (1997) Molecular marker-assisted selection for malting quality traits in barley. Mol Breed 3:427–437. doi:10.1023/A:1009608312385 CrossRefGoogle Scholar
  15. Harjes CE, Rocheford TR, Bai L, Brutnell TP, Kandianis CB, Sowinski SG et al (2008) Natural genetic variation in Lycopene epsilon cyclase tapped for maize biofortification. Science 319:330–333. doi:10.1126/science.1150255 PubMedCrossRefGoogle Scholar
  16. Hayes PM, Liu BH, Knapp SJ, Chen F, Jones B, Blake T et al (1993) Quantitative trait locus effects and environmental interaction in a sample of North American barley germplasm. Theor Appl Genet 87:392–401. doi:10.1007/BF01184929 CrossRefGoogle Scholar
  17. Khursheed B, Rogers JC (1988) Barley alpha-amylase genes. Quantitative comparison of steady state mRNA levels from individual members of the two different families expressed in aleurone cells. J Biol Chem 263:18953–18960PubMedGoogle Scholar
  18. Knox CAP, Sonthayanon B, Chandra GR, Muthukrishnan S (1987) Structure and organization of two divergent α-amylase genes from barley. Plant Mol Biol 9:3–17. doi:10.1007/BF00017982 CrossRefGoogle Scholar
  19. Kosambi D (1944) The calculation of map distances from recombination values. Ann Eugen 12:172–175Google Scholar
  20. Kraakman ATW, Niks RE, van der Berg PM, Stam P, van Eeuwijk FA (2004) Linkage disequilibrium mapping of yield and yield stability in modern spring barley cultivars. Genetics 168:435–446. doi:10.1534/genetics.104.026831 PubMedCrossRefGoogle Scholar
  21. Kraakman ATW, Martinez F, Mussiraliev B, van Eeuwijk FA, Niks RE (2006) Linkage disequilibrium mapping of morphological resistance, and other agronomically relevant traits in modern spring barley cultivars. Mol Breed 17:41–58. doi:10.1007/s11032-005-1119-8 CrossRefGoogle Scholar
  22. Kuenne C, Lange M, Funke T, Miehe H, Thiel T, Grosse I, Scholz U (2005) CR-EST: a resource for crop ESTs. Nucleic Acids Res 33(Database issue):D619–D621. doi:10.1093/nar/gki119 CrossRefGoogle Scholar
  23. Lander ES, Green P, Abrahamson J, Barlow A, Daly MJ, Lincoln SE, Newberry L (1987) Mapmaker: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1:174–181. doi:10.1016/0888-7543(87)90010-3 PubMedCrossRefGoogle Scholar
  24. Malysheva-Otto L, Röder MS (2006) Haplotype diversity in the endosperm specific β-amylase gene Bmy1 of cultivated barley (Hordeum vulgare L.). Mol Breed 18:143–156. doi:10.1007/s11032-006-9023-4 CrossRefGoogle Scholar
  25. Malysheva-Otto LV, Ganal MW, Röder MS (2006) Analysis of molecular diversity, population structure and linkage disequilibrium in worldwide cultivated barley germplasm (Hordeum vulgare L.). BMC Genet 7:6. doi:10.1186/1471-2156-7-6 PubMedCrossRefGoogle Scholar
  26. Marquez-Cedillo LA, Hayes PM, Jones BL, Kleinhofs A, Legge WG, Rossnagel BG et al (2000) QTL analysis of malting quality in barley based on doubled-haploid progeny of two elite North American varieties representing different germplasm pools. Theor Appl Genet 101:173–184. doi:10.1007/s001220051466 CrossRefGoogle Scholar
  27. Plaschke J, Ganal MW, Röder MS (1995) Detection of genetic diversity in closely related bread wheat using microsatellite markers. Theor Appl Genet 91:1001–1007. doi:10.1007/BF00223912 CrossRefGoogle Scholar
  28. Polakova KM, Kucera L, Laurie DA, Vaculova K, Ovesna J (2005) Coding region single nucleotide polymorphism in the barley low-pI, α-amylase gene Amy32b. Theor Appl Genet 110:1499–1504. doi:10.1007/s00122-005-1985-9 PubMedCrossRefGoogle Scholar
  29. Pritchard JK, Stephens M, Donnelly PJ (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959PubMedGoogle Scholar
  30. Rahmatullah RJ, Huang JK, Clark KL, Reeck GR, Chandra GR, Muthukrishnan S (1989) Nucleotide and predicted amino acid sequences of two different genes for high pI alpha-amylases from barley. Plant Mol Biol 12:119–121. doi:10.1007/BF00017454 CrossRefGoogle Scholar
  31. Robert X, Haser R, Gottschalk TE, Ratajcak F, Driguez H, Svensson B et al (2003) The structure of barley α-amylase isozyme 1 reveals a novel role of domain C in substrate recognition and binding: a pair of sugar tongs. Structure 11:973–984. doi:10.1016/S0969-2126(03)00151-5 PubMedCrossRefGoogle Scholar
  32. Röder MS, Korzun V, Wendehake K, Plaschke J, Tixier MH, Leroy P et al (1998) A microsatellite map of wheat. Genetics 149:2007–2023PubMedGoogle Scholar
  33. Rogers JC (1985) Two barley alpha-amylase gene families are regulated differently in aleurone cells. J Biol Chem 260:3731–3738PubMedGoogle Scholar
  34. Rogers JC, Milliman C (1983) Isolation and sequence analysis of a barley α-amylase cDNA clone. J Biol Chem 258:8169–8174PubMedGoogle Scholar
  35. Rogers JC, Milliman C (1984) Coordinate increase in major transcripts from the high pI α-amylase multigene family in barley aleurone cells stimulated with gibberellic acid. J Biol Chem 259:12234–12240PubMedGoogle Scholar
  36. Rostoks N, Ramsay L, MacKenzie K, Cardle L, Bhat PR, Roose ML et al (2006) Recent history of artificial outcrossing facilitates whole-genome association mapping in elite inbred crop varieties. Proc Natl Acad Sci USA 103:18656–18661. doi:10.1073/pnas.0606133103 PubMedCrossRefGoogle Scholar
  37. Schlueter SD, Dong Q, Brendel V (2003) GeneSeqer@PlantGDB: gene structure prediction in plant genomes. Nucleic Acids Res 31(13):3597–3600. doi:10.1093/nar/gkg533 PubMedCrossRefGoogle Scholar
  38. Searle SR (1987) Linear models for unbalanced data. Wiley, New YorkGoogle Scholar
  39. Stein N, Prasad M, Scholz U, Thiel T, Zhang H, Wolf M et al (2007) A 1,000-loci transcript map of the barley genome: new anchoring points for integrative grass genomics. Theor Appl Genet 114:823–839. doi:10.1007/s00122-006-0480-2 PubMedCrossRefGoogle Scholar
  40. Stracke S, Presterl T, Stein N, Perovic D, Ordon F, Graner A (2007) Effects of introgression and recombination on haplotype structure and linkage disequilibrium surrounding a locus containing Bymovirus resistance in barley. Genetics 175:805–817. doi:10.1534/genetics.106.063800 PubMedCrossRefGoogle Scholar
  41. Thornsberry JM, Goodman MM, Doebley J, Kresovich S, Nielsen D, Buckler ES (2001) Dwarf8 polymorphisms associate with variation in flowering time. Nat Genet 28:4673–4680. doi:10.1038/90135 CrossRefGoogle Scholar
  42. Weining S, Ko L, Henry RJ (1994) Polymorphisms in the α-amy1 gene of wild and cultivated barley revealed by polymerase chain reaction. Theor Appl Genet 89:509–513. doi:10.1007/BF00225388 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.Leibniz Institute of Plant Genetics and Crop Plant Research (IPK)GaterslebenGermany

Personalised recommendations